Artículo

El editor permite la descarga del artículo en su versión final
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Thelonectria is a recently established genus of common and ubiquitous fungi on woody hosts, previously placed in the genus Neonectria. Thelonectria coronata and T. veuillotiana occur sympatrically in tropical, subtropical and temperate regions. Previous taxonomic studies including T. coronata and T. veuillotiana suggested these fungi could represent species complexes; however, the morphological features used to define species exhibited few differences useful for testing this hypothesis. To assess the status of T. coronata and T. veuillotiana, phylogenetic analyses of six genomic regions were combined with a morphological examination of specimens. A multigene phylogeny reconstructed with maximum parsimony, maximum likelihood and Bayesian approaches identified five phylogenetic groups in T. coronata and six in T. veuillotiana. As is common for cryptic species, unequivocal diagnostic morphological characters could not be identified; however, average values of morphological traits correspond to the phylogenetic groups. An increased number of nonsynonymous/ synonymous substitutions in the b-tubulin gene and a decreased or absent production of conidia were detected within the T. coronata complex, possibly indicating the homothallic nature of these isolates. T. coronata and T. veuillotiana and related species are described and illustrated here; a dichotomous key to all species is provided. © 2012 by The Mycological Society of America.

Registro:

Documento: Artículo
Título:Multigene phylogenetic analyses of the Thelonectria coronata and T. veuillotiana species complexes
Autor:Salgado-Salazar, C.; Rossman, A.; Samuels, G.J.; Capdet, M.; Chaverri, P.
Filiación:University of Maryland, Department of Plant Science and Landscape Architecture, 2112 Plant Sciences Building, College Park, MD 20742, United States
USDA-ARS, Systematic Mycology and Microbiology Laboratory, Beltsville, MD 20705, United States
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellón 2, Buenos Aires, Argentina
Palabras clave:Ascomycota; Fungi; Homothallic; Hypocreales; Neonectria; Phylogenetic analyses; Species concept; Taxonomy; actin; fungal DNA; fungal protein; ribosomal spacer DNA; ribosome DNA; RNA polymerase II; tubulin; Bayesian analysis; fungus; genomics; hypothesis testing; identification key; maximum likelihood analysis; morphology; parsimony analysis; phylogenetics; species complex; species concept; sympatry; taxonomy; woody plant; article; Ascomycetes; chemistry; classification; cytology; DNA sequence; fungus spore; genetics; isolation and purification; microbiological examination; molecular genetics; multilocus sequence typing; nucleotide sequence; phylogeny; RNA translation; Actins; Ascomycota; Base Sequence; DNA, Fungal; DNA, Ribosomal; DNA, Ribosomal Spacer; Fungal Proteins; Molecular Sequence Data; Multilocus Sequence Typing; Mycological Typing Techniques; Peptide Chain Elongation, Translational; Phylogeny; RNA Polymerase II; Sequence Analysis, DNA; Spores, Fungal; Tubulin; Ascomycota; Fungi; Hypocreales; Neonectria
Año:2012
Volumen:104
Número:6
Página de inicio:1325
Página de fin:1350
DOI: http://dx.doi.org/10.3852/12-055
Handle:http://hdl.handle.net/20.500.12110/paper_00275514_v104_n6_p1325_SalgadoSalazar
Título revista:Mycologia
Título revista abreviado:Mycologia
ISSN:00275514
CODEN:MYCOA
CAS:Actins; DNA, Fungal; DNA, Ribosomal; DNA, Ribosomal Spacer; Fungal Proteins; RNA Polymerase II, 2.7.7.-; Tubulin
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_00275514_v104_n6_p1325_SalgadoSalazar.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00275514_v104_n6_p1325_SalgadoSalazar

Referencias:

  • Avise, J.C., Ball, R.M., Principles of genealogical concordance in species concepts and biological taxonomy (1990) Oxford Surv Evol Biol, 7, pp. 45-67. , In: Futuyma D, Antonovics J, eds
  • Barker, F.K., Lutzoni, F.M., The utility of the incongruence length difference test (2002) Syst Biol, 51, pp. 625-637
  • Bandelt, H.J., Dress, A.W., Split decomposition: a new and useful approach to phylogenetic analysis of distance data (1992) Mol Phylogenet Evol, 1, pp. 242-252
  • Bensch, K., Groenewald, J.Z., Dijksterhuis, J., Starink-Willemse, M., Andersen, B., Summerell, B.A., Shin, H.-D., Crous, P.W., Species and ecological diversity within the Cladosporium cladosporoides complex (Davidiellaceae Capnodiales) (2010) Stud Mycol, 67, pp. 1-94
  • Booth, C., Studies of pyrenomycete (1959) IV. Nectria 1. Mycol Pap, 73, pp. 1-115
  • Brayford, D., Samuels, G.J., Some didymosporous species of Nectria with non-microconidial Cylindrocarpon anamorphs (1993) Mycologia, 85, pp. 612-637
  • Bruen, T.C., Philippe, H., Bryant, D., A simple and robust statistical test to detect the presence of recombination (2006) Genetics, 172, pp. 2665-2681
  • Bruggeman, J., Debets, A.J.M., Wijngaarden, P.J., de Vieser, J.A., Hoekstra, R.F., Sex slows down the accumulation of deleterious mutations in the homothallic fungus Aspergillus nidulans (2003) Genetics, 164, pp. 479-485
  • Bryant, D., Moulton, V., Neighbor-net: an agglomerative method for the construction of phylogenetic networks (2004) Mol Biol Evol, 21, pp. 255-265
  • Burt, A., Carter, D.A., Koenig, G.L., White, T.J., Taylor, J.W., Molecular markers reveal cryptic sex in the humanpathogen Coccidioides immitis (1996) Proc Natl Acad Sci USA, 93, pp. 770-773
  • Carbone, I., Kohn, L., Inferring process from pattern in fungal population genetics (2004) Applied mycology & biotechnology fungal genomics, 4, pp. 29-58. , Arora DK, Khachatourians GG, eds
  • Chaverri, P., Salgado, C., Hirooka, Y., Rossman, A.Y., Samuels, G.J., Delimitation of Nectria and Cylindrocarpon (Nectriaceae, Hypocreales Ascomycota) and related genera with Cylindrocarpon-like anamorphs (2011) Stud Mycol, 68, pp. 57-68
  • Croll, D., Sanders, I.R., Recombination Glomus intraradices a supposed ancient asexual arbuscular mycorrhizal fungus (2009) BMC Evol Biol, 9, p. 13
  • Cummings, M.P., Neel, M.C., Shaw, K.L., A genealogical approach to quantifying lineage divergence (2008) Evolution, 62, pp. 2242-2411
  • Cunningham, C., Can three incongruence tests predict when data should be combined? (1997) Mol Biol Evol, 14, pp. 432-437
  • Davis, R.H., (2000) Neurospora, pp. 261-282. , Contributions of a model organism. New York: Oxford Univ. Press
  • Debeaux, O., Trabut, A., Therry, J., Telesphore, Roumeguere, C., Bouquet de champignons nouveaux observés dans le Midi de la France et en Algérie (1879-1880) (1880) Rev Mycol, Toulouse, 2, pp. 187-191
  • Del-Prado, R., Cubas, P., Lumbsch, H.T., Divakar, P.K., Blanco, O., Amo de Paz, G., Molina, M.C., Crespo, A., Genetic distances within and among species in monophyletic lineages of Parmeliaceae (Ascomycota) as a tool for taxon delimitation (2010) Mol Phylogenet Evol, 56, pp. 125-133
  • Dettman, J.R., Jacobson, D.J., Taylor, J.W., A multilocus genealogical approach to phylogenetic species recognition in the model eukaryote Neurospora (2003) Evolution, 57, pp. 2703-2720
  • Douhan, G.W., Martin, D.P., Rizzo, D.M., Using the putative asexual fungus Cenococcum geophilum as a model to test how species concepts influence recombination analyses using sequence data from multiple loci (2007) Curr Genet, 52, pp. 191-201
  • Druzhinina, I.S., Kubicek, C.P., Komon-Zelazowska, M., Belayneh, M., Bissett, J., The Trichoderma harzianum demon: complex speciation history resulting in coexistence of hypothetical biological species, recent agamospecies and numerous relict lineages (2010) BMC Evol Biol, 10, p. 94
  • Ekins, M., Aitken, E.A., Coulter, K.C., Homothallism in Sclerotinia minor (2006) Mycol Res, 110, pp. 1193-1199
  • Farris, J.S., Constructing a significance test from incongruence (1995) Syst Biol, 44, pp. 570-572
  • Farris, J.S., Kallersjo, M., Kludge, A.G., Bult, C., Testing significance of incongruence (1994) Cladistics, 10, pp. 315-319
  • Felsenstein, J., Confidence limits on phylogenies: an approach using the bootstrap (1985) Evolution, 39, pp. 783-791
  • Fisher, M.C., Rannala, B., Chaturvedi, V., Taylor, J.W., (2002) Disease surveillance in recombining pathogens: multilocus genotypes identify sources of human Coccidioides infections. Proc Natl Acad Sci USA, 99, pp. 9067-9071
  • Fournier, E., Giraud, T., Albertini, C., Brygoo, Y., Partition of the Botrytis cinerea complex in France using multiple gene genealogies (2005) Mycologia, 97, pp. 1251-1267
  • Geiser, D.M., Pitt, J.I., Taylor, J.W., Cryptic speciation and recombination in the aflatoxin-producing fungus Aspergillus flavus (1998) Proc Natl Acad Sci USA, 95, pp. 388-393
  • Giraud, T., Yockteng, R., Lopez-Villavicencio, M., Refregier, G., Hood, M.E., Mating system of the anther smut fungus Microbotryum violaceum: selfing under heterothallism (2008) Eukaryot Cell, 7, pp. 765-775
  • Guindon, S., Gascuel, O., A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood (2003) Syst Biol, 52, pp. 696-704
  • Guu, J.-R., Ju, Y.-M., Hsieh, H.-J., Nectriaceous fungi collected from forest in Taiwan (2007) Bot Stud, 48, pp. 187-203
  • Hirooka, Y., Kobayashi, T., Natsuaki, K.T., Aoki, T., Neonectria amamiensis and Cylindrocarpon amamiense, a new nectrioid fungus and its sporodochial anamorph on Pinus luchuensis from Japan (2006) Mycoscience, 47, pp. 248-256
  • Huelsenbeck, J.P., Rannala, B., Frequentist properties of Bayesian posterior probabilities of phylogenetic trees under simple and complex substitution models (2004) Syst Biol, 53, pp. 904-913
  • Huelsenbeck, J.P., Rannala, B., Ronquist, F., Nielsen, R., Bollback, J.P., Bayesian inference of phylogeny and its impact on evolutionary biology (2001) Science, 294, pp. 2310-2314
  • Huson, D.H., Bryant, D., Application of phylogenetic networks in evolutionary studies (2006) Mol Biol Evol, 23, pp. 254-267
  • Katoh, K., Toh, H., Recent developments in the MAFFT multiple sequence alignment program (2008) Brief Bioinform, 9, pp. 286-298
  • Koufopanou, V., Burt, A., Taylor, J.W., Concordance of gene genealogies reveals reproductive isolation in the pathogenic fungus Coccidioides immitis (1997) Proc Natl Acad Sci USA, 94, pp. 5478-5482
  • Marra, R.E., Corwin, J.A., Isolation and characterization of codominant markers for the perennial canker fungal pathogen Neonectria ditissima (2009) Mol Ecol Resour, 9, pp. 906-909
  • Martin, D., Lemey, P., Lott, M., Moulton, V., Posada, D., Lefeuvre, P., RDP3: a flexible and fast computer program for analyzing recombination (2010) Bioinformatics, 26, pp. 2462-2464
  • Miller, A.N., Huhndorf, S.M., Using phylogenetic species recognition to delimit species boundaries within Lasiosphaeria (2004) Mycologia, 96, pp. 1106-1127
  • Nauta, M.J., Hoekstra, R.F., Evolution of reproductive systems in filamentous ascomycetes I Evolution ofmating types (1992) Heredity, 68, pp. 405-410
  • Nygren, K., Strabdberg, R., Wallberg, A., Nabholz, B., Gustafsson, T., Garcia, D., Cano, J., Johannesson, H., A comprehensive phylogeny of Neurospora reveals a link between reproductive mode and molecular evolution in fungi (2011) Mol Phylogenet Evol, 59, pp. 649-663
  • Penzig, A.J.O., Saccardo, P.A., Diagnoses fungorum novorum in insula Java collectorum II (1897) Malpighia, 11, pp. 491-530
  • Posada, D., Evaluation of methods for detecting recombination from DNA sequences: empirical data (2002) Mol Biol Evol, 19, pp. 708-717
  • Posada, D., jModeltest: phylogenetic model averaging (2008) Mol Biol Evol, 25, pp. 1253-1256
  • Posada, D., Crandall, K.A., Holmes, E.C., Recombination in evolutionary genomics (2002) Annu Rev Genet, 36, pp. 75-97
  • Pringle, A., Baker, D.M., Platt, J.L., Wares, J.P., Latge, J.P., Taylor, J.W., Cryptic speciation in the cosmopolitan and clonal human pathogenic fungus (2005) Aspergillus fumigatus, 59, pp. 1886-1899. , Evolution
  • Rayner, R.W., A mycological color chart. Commonwealth Mycological Institute (1970) Kew, Surrey, , http://tree.bio.ed.ac.uk/software/figtree/, UK. 34 Rambaut A. 2005. FigTree 1.3.1
  • Rayner, R.W., Drummond, A.J., (2007), http://beast.bio.ed.ac.uk/Tracer, Tracer 1.5; Rodriguez, R.J., Cullen, D., Kurtzman, C.T., Khachatourians, G.G., Hegedus, D.D., Molecular methods for discriminating taxa, monitoring species and assessing fungal diversity (2005) Biodiversity of fungi: inventory and monitoring methods, pp. 77-98. , Mueller GM, Bills GF, Foster MS, eds. Elsevier Academic Press
  • Ronquist, F., Huelsenbeck, J.P., MrBayes Bayesian phylogenetic inference under mixed models (2003) Bioinformatics, (3), pp. 1572-1574
  • Rozas, J., Sanchez-Del Barrio, J.C., Messeguer, X., Rozas, R., Dna, S.P., DNA polymorphism analyses by the coalescent and other methods (2003) Bioinformatics, 19, pp. 2496-2497
  • Samuels, G.J., Brayford, D., Species of Nectria (sensu lato) with red perithecia and striate ascospores (1994) Sydowia, 46, pp. 75-161
  • Samuels, G.J., Brayford, D., Doi, Y., Rogerson, C.T., Hypocreales (1990) Contributions toward a mycobiota of Indonesia: Hypocreales, synnematous Hyphomycetes, Aphyllophorales, Phragmobasidiomycetes and Myxomycetes, pp. 6-108. , Samuels GJ, ed. New York Botanical Garden
  • Schoch, C.L., Seifert, K.A., Huhndorf, S., Robert, V., Spouge, J.L., Levesque, C.A., Chen, W., Fungal Barcoding Consortium Nuclear ribosomal internal transcribed spacer (ITS) region as a universalDNA barcode marker for fungi (2012) ProcNatl Acad Sci USA, 109, pp. 6241-6246
  • Seifert, K.A., Progress toward DNA barcoding of fungi (2009) Mol Ecol Resour, 9 (SUPPL. 1), pp. 83-89
  • Seifert, K.A., Rossman, A.Y., How to describe a new fungal species (2011) IMA Fungus, 1, pp. 109-116
  • Sites, J.W., Marshall, J.C., Delimiting species: a renaissance issue in systematic biology (2003) Trends Ecol Evol, 18, pp. 462-470
  • Stamatakis, A., RAxML-VI-HPC: maximum likelihoodbased phylogenetic analyses with thousands of taxa and mixed models (2006) Bioinformatics, 22, pp. 2688-2690
  • Stielow, B., Bratek, Z., Orczan, A.K.I., Rudnoy, S., Hensel, G., Hoffmann, P., Klenk, H.-P., Goker, M., Species delimitation in taxonomically difficult fungi: the case of Hymenogaster (2011) PLoS ONE, 6 (1), pp. e15614
  • Swofford, D.L., (2000) Sunderland, Massachusetts: Sinauer Associates, , PAUPz.ast; 4.0a114: phylogenetic analysis using parsimony (z.ast;and other methods)
  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S., MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance and maximum parsimony methods (2011) Mol Biol Evol, 28, pp. 2731-2739
  • Taskin, H., Buyukalaca, S., Dogan, H.H., Rehner, S.A., O'Donnell, K., A multigene molecular phylogenetic assessment of true morels (Morchella) in Turkey (2010) Fungal Genet Biol, 47, pp. 672-682
  • Taylor, J.W., Jacobson, D.J., Fisher, M.C., The evolution of asexual fungi: reproduction, speciation and classification (1999) Annu Rev Phytopathol, 37, pp. 197-246
  • Taylor, J.W., Jacobson, D.J., Fisher, M.C., Kroken, S., Kasuga, T., Geiser, D.M., Hibbett, D.S., Fisher, M.C., Phylogenetic species recognition and species concepts in fungi (2000) Fungal Genet Biol, 31, pp. 21-32
  • Taylor, J.W., Jacobson, D.J., Fisher, M.C., Turner, E., Townsend, J.P., Dettman, J.R., Jacobson, D., Eukaryotic microbes, species recognition and the geographic limits of species: examples from the kingdom Fungi (2006) Phil Trans R Soc B, 361, pp. 1947-1963
  • Wall, J.D., Recombination and the power of statistical tests of neutrality (1999) Genet Res Camb, 74, pp. 65-79
  • Whittle, C.A., Nygren, K., Johannesson, H., Consequences of reproductive mode on genome evolution of fungi (2011) Fungal Genet Biol, 48, pp. 661-667
  • Zhuang, W.-Y., Nong, Y., Luo, J., New species and new Chinese records of Bionectriaceae and Nectriaceae (Hypocreales, Ascomycetes) from Hubei (2007) China. Fungal Divers, 24, pp. 347-357

Citas:

---------- APA ----------
Salgado-Salazar, C., Rossman, A., Samuels, G.J., Capdet, M. & Chaverri, P. (2012) . Multigene phylogenetic analyses of the Thelonectria coronata and T. veuillotiana species complexes. Mycologia, 104(6), 1325-1350.
http://dx.doi.org/10.3852/12-055
---------- CHICAGO ----------
Salgado-Salazar, C., Rossman, A., Samuels, G.J., Capdet, M., Chaverri, P. "Multigene phylogenetic analyses of the Thelonectria coronata and T. veuillotiana species complexes" . Mycologia 104, no. 6 (2012) : 1325-1350.
http://dx.doi.org/10.3852/12-055
---------- MLA ----------
Salgado-Salazar, C., Rossman, A., Samuels, G.J., Capdet, M., Chaverri, P. "Multigene phylogenetic analyses of the Thelonectria coronata and T. veuillotiana species complexes" . Mycologia, vol. 104, no. 6, 2012, pp. 1325-1350.
http://dx.doi.org/10.3852/12-055
---------- VANCOUVER ----------
Salgado-Salazar, C., Rossman, A., Samuels, G.J., Capdet, M., Chaverri, P. Multigene phylogenetic analyses of the Thelonectria coronata and T. veuillotiana species complexes. Mycologia. 2012;104(6):1325-1350.
http://dx.doi.org/10.3852/12-055