Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Satellite observations have revealed that some of the world's most intense deep convective storms occur near the Sierras de Córdoba, Argentina, South America. A C-band, dual-polarization Doppler weather radar recently installed in the city of Córdoba in 2015 is now providing a high-resolution radar perspective of this intense convection. Radar data from two austral spring and summer seasons (2015-17) are used to document the convective life cycle, while reanalysis data are utilized to construct storm environments across this region. Most of the storms in the region are multicellular and initiate most frequently during the early afternoon and late evening hours near and just east of the Sierras de Córdoba. Annually, the peak occurrence of these storms is during the austral summer months of December, January, and February. These Córdoba radar-based statistics are shown to be comparable to statistics derived from Tropical Rainfall Measuring Mission Precipitation Radar data. While generally similar to storm environments in the United States, storm environments in central Argentina tend to be characterized by larger CAPE and weaker low-level vertical wind shear. One of the more intriguing results is the relatively fast transition from first storms to larger mesoscale convective systems, compared with locations in the central United States. © 2018 American Meteorological Society.

Registro:

Documento: Artículo
Título:Convective storm life cycle and environments near the Sierras de Córdoba, Argentina
Autor:Mulholland, J.P.; Nesbitt, S.W.; Trapp, R.J.; Rasmussen, K.L.; Salio, P.V.
Filiación:Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
Department of Atmospheric Sciences, Colorado State University, Fort Collins, CO, United States
Department of Atmospheric and Oceanic Sciences, University of Buenos Aires, Buenos Aires, Argentina
Palabras clave:Climatology; Convective storms; Mesoscale processes; Radars/Radar observations; Reanalysis data; Storm environments; Climatology; Doppler radar; Meteorological radar; Rain; Storms; Convective storms; Mesoscale process; Radars/radar observations; Reanalysis; Storm environments; Radar measurement; climatology; convective system; Doppler radar; life cycle analysis; mesoscale meteorology; spring (season); storm; summer; TRMM; Argentina; Sierras de Cordoba
Año:2018
Volumen:146
Número:8
Página de inicio:2541
Página de fin:2557
DOI: http://dx.doi.org/10.1175/MWR-D-18-0081.1
Título revista:Monthly Weather Review
Título revista abreviado:Mon. Weather Rev.
ISSN:00270644
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00270644_v146_n8_p2541_Mulholland

Referencias:

  • Bluestein, H.B., Jain, M.H., Formation of mesoscale lines of precipitation: Severe squall lines in Oklahoma during the spring (1985) J. Atmos. Sci, 42, pp. 1711-1732. , https://doi.org/10.1175/1520-0469(1985)042<1711:FOMLOP>2.0.CO;2
  • Blumberg, W.G., Halbert, K.T., Supinie, T.A., Marsh, P.T., Thompson, R.L., Hart, J.A., SHARPpy: An open-source sounding analysis toolkit for the atmospheric sciences (2017) Bull. Amer. Meteor. Soc, 98, pp. 1625-1636. , https://doi.org/10.1175/BAMS-D-15-00309.1
  • Bonner, W.D., Climatology of the low level jet (1968) Mon. Wea. Rev, 96, pp. 833-850. , https://doi.org/10.1175/1520-0493(1968)096<0833:COTLLJ>2.0.CO;2
  • Brooks, H., Doswell, C.A., III, Kay, M.P., Climatological estimates of local daily tornado probability for the United States (2003) Wea. Forecasting, 18, pp. 626-640. , https://doi.org/10.1175/1520-0434(2003)018<0626:CEOLDT>2.0.CO;2
  • Cecil, D.J., Blankenship, C.B., Toward a global climatology of severe hailstorms as estimated by satellite passive microwave imagers (2012) J. Climate, 25, pp. 687-703. , https://doi.org/10.1175/JCLI-D-11-00130.1
  • Coniglio, M.C., Hwang, J.Y., Stensrud, D.J., Environmental factors in the upscale growth and longevity of MCSs derived from Rapid Update Cycle analyses (2010) Mon. Wea. Rev, 138, pp. 3514-3539. , https://doi.org/10.1175/2010MWR3233.1
  • Davies-Jones, R., Streamwise vorticity: The origin of updraft rotation in supercell storms (1984) J. Atmos. Sci, 41, pp. 2991-3006. , https://doi.org/10.1175/1520-0469(1984)041<2991:SVTOOU>2.0.CO;2
  • Dee, D.P., The ERA-Interim reanalysis: Configuration and performance of the data assimilation system (2011) Quart. J. Roy. Meteor. Soc, 137, pp. 553-597. , https://doi.org/10.1002/qj.828
  • Dial, G.L., Racy, J.P., Thompson, R.L., Short-term convective mode evolution along synoptic boundaries (2010) Wea. Forecasting, 25, pp. 1430-1446. , https://doi.org/10.1175/2010WAF2222315.1
  • Doswell, C.A., III, Brooks, H.E., Maddox, R.A., Flash flood forecasting: An ingredients-based methodology (1996) Wea. Forecasting, 11, pp. 560-581. , https://doi.org/10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2
  • Fabry, F., (2015) Radar Meteorology: Principles and Practice, p. 256. , Cambridge University Press
  • Gallus, W.A., Snook, N.A., Johnson, E.V., Spring and summer severe weather reports over the Midwest as a function of convective mode: A preliminary study (2008) Wea. Forecasting, 23, pp. 101-113. , https://doi.org/10.1175/2007WAF2006120.1
  • Helmus, J.J., Collis, S.M., The Python ARM Radar Toolkit (Py-ART), a library for working with weather radar data in the Python programming language (2016) J. Open Res. Software, 4, p. e25. , https://doi.org/10.5334/jors.119
  • Heymsfield, G.M., Geerts, B., Tian, L., TRMM precipitation radar reflectivity profiles as compared with high-resolution airborne and ground-based radar measurements (2000) J. Appl. Meteor, 39, pp. 2080-2102. , https://doi.org/10.1175/1520-0450(2001)040<2080:TPRRPA>2.0.CO;2
  • Houze, R.A., Jr., Smull, B.F., Dodge, P., Mesoscale organization of springtime rainstorms in Oklahoma (1990) Mon. Wea. Rev, 118, pp. 613-654. , https://doi.org/10.1175/1520-0493(1990)118<0613:MOOSRI>2.0.CO;2
  • Houze, R.A., Jr., Wilton, D.C., Smull, B.F., Monsoon convection in the Himalayan region as seen by the TRMM precipitation radar (2007) Quart. J. Roy. Meteor. Soc, 133, pp. 1389-1411. , https://doi.org/10.1002/qj.106
  • Houze, R.A., Jr., Rasmussen, K.L., Zuluaga, M.D., Brodzik, S.R., The variable nature of convection in the tropics and subtropics: A legacy of 16 years of the Tropical Rainfall Measuring Mission satellite (2015) Rev. Geophys, 53, pp. 994-1021. , https://doi.org/10.1002/2015RG000488
  • Johns, R.H., Doswell, C.A., Severe local storms forecasting (1992) Wea. Forecasting, 7, pp. 588-612. , https://doi.org/10.1175/1520-0434(1992)007<0588:SLSF>2.0.CO;2
  • Johnson, R.H., Mapes, B.E., Mesoscale processes and severe convective weather (2001) Severe Convective Storms, Meteor. Monogr, (50), pp. 71-122. , https://doi.org/10.1175/0065-9401-28.50.71, Amer. Meteor. Soc
  • Klimowski, B.A., Hjelmfelt, M.R., Bunkers, M.J., Radar observations of the early evolution of bow echoes (2004) Wea. Forecasting, 19, pp. 727-734. , https://doi.org/10.1175/1520-0434(2004)019<0727:ROOTEE>2.0.CO;2
  • Kummerow, C., Barnes, W., Kozu, T., Shiue, J., Simpson, J., The Tropical Rainfall Measuring Mission (TRMM) sensor package (1998) J. Atmos. Oceanic Technol, 15, pp. 809-817. , https://doi.org/10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2
  • Lichtenstein, E.R., (1980) La depresion del Noroeste Argentino (The northwestern Argentina low), p. 223. , Ph.D. dissertation, Ciudad Universitaria
  • Markowski, P.M., Richardson, Y.P., The influence of environmental low-level shear and cold pools on tornadogenesis: Insights from idealized simulations (2014) J. Atmos. Sci, 71, pp. 243-275. , https://doi.org/10.1175/JAS-D-13-0159.1
  • Markowski, P.M., Straka, J.M., Rasmussen, E.N., Direct surface thermodynamic observations within the rear-flank downdrafts of nontornadic and tornadic supercells (2002) Mon. Wea. Rev, 130, pp. 1692-1721. , https://doi.org/10.1175/1520-0493(2002)130<1692:DSTOWT>2.0.CO;2
  • Nesbitt, S.W., Cifelli, R., Rutledge, S.A., Storm morphology and rainfall characteristics of TRMM precipitation features (2006) Mon. Wea. Rev, 134, pp. 2702-2721. , https://doi.org/10.1175/MWR3200.1
  • Nielsen, E.R., Herman, G.R., Tournay, R.C., Peters, J.M., Schumacher, R.S., Double impact: When both tornadoes and flash floods threaten the same place at the same time (2015) Wea. Forecasting, 30, pp. 1673-1693. , https://doi.org/10.1175/WAF-D-15-0084.1
  • Rasmussen, K.L., Houze, R.A., Jr., Orogenic convection in subtropical South America as seen by the TRMM satellite (2011) Mon. Wea. Rev, 139, pp. 2399-2420. , https://doi.org/10.1175/MWR-D-10-05006.1
  • Rasmussen, K.L., Houze, R.A., Jr., Convective initiation near the Andes in subtropical South America (2016) Mon. Wea. Rev, 144, pp. 2351-2374. , https://doi.org/10.1175/MWR-D-15-0058.1
  • Rasmussen, K.L., Zuluaga, M.D., Houze, R.A., Severe convection and lighting in subtropical South America (2014) Geophys. Res. Lett, 41, pp. 7359-7366. , https://doi.org/10.1002/2014GL061767
  • Rauber, R.M., Nesbitt, S.W., (2018) Radar Meteorology, an Introduction, p. 461. , Wiley Blackwell
  • Repinaldo, H.F.B., Nicolini, M., Skabar, Y.G., Characterizing the diurnal cycle of low-level circulation and convergence using CFSR data in southeastern South America (2015) J. Appl. Meteor. Climatol, 54, pp. 671-690. , https://doi.org/10.1175/JAMC-D-14-0114.1
  • Ribeiro, B.Z., Bosart, L.F., Elevated mixed layers and associated severe thunderstorm environments in South and North America (2018) Mon. Wea. Rev, 146, pp. 3-28. , https://doi.org/10.1175/MWR-D-17-0121.1
  • Romatschke, U., Houze, R.A., Jr., Extreme summer convection in South America (2010) J. Climate, 23, pp. 3761-3791. , https://doi.org/10.1175/2010JCLI3465.1
  • Salio, P., Nicolini, M., Zipser, E.J., Mesoscale convective systems over southeastern South America and their relationship with the South American low-level jet (2007) Mon. Wea. Rev, 135, pp. 1290-1309. , https://doi.org/10.1175/MWR3305.1
  • Saulo, A.C., Seluchi, M.E., Nicolini, M., A case study of a Chaco low-level jet event (2004) Mon. Wea. Rev, 132, pp. 2669-2683. , https://doi.org/10.1175/MWR2815.1
  • Saulo, A.C., Ruiz, J., Skabar, Y.G., Synergism between the low-level jet and organized convection at its exit region (2007) Mon. Wea. Rev, 135, pp. 1310-1326. , https://doi.org/10.1175/MWR3317.1
  • Schmid, B., The DOE ARM Aerial Facility (2014) Bull. Amer. Meteor. Soc, 95, pp. 723-742. , https://doi.org/10.1175/BAMS-D-13-00040.1
  • Schumann, M.R., Roebber, P.J., The influence of upper-tropospheric potential vorticity on convective morphology (2010) Mon. Wea. Rev, 138, pp. 463-474. , https://doi.org/10.1175/2009MWR3091.1
  • Scott, D.W., (1992) Multivariate Density Estimation: Theory, Practice, and Visualization, p. 336. , John Wiley & Sons
  • Seluchi, M.E., Saulo, A.C., Nicolini, M., Satyamurty, P., The northwestern Argentinean low: A study of two typical events (2003) Mon. Wea. Rev, 131, pp. 2361-2378. , https://doi.org/10.1175/1520-0493(2003)131<2361:TNALAS>2.0.CO;2
  • Smith, B.T., Thompson, R.L., Grams, J.S., Broyles, C., Brooks, H.E., Convective modes for significant severe thunderstorms in the contiguous United States. Part I: Storm classification and climatology (2012) Wea. Forecasting, 27, pp. 1114-1135. , https://doi.org/10.1175/WAF-D-11-00115.1
  • Thompson, R.L., Edwards, R., Hart, J.A., Elmore, K.L., Markowski, P., Close proximity soundings within supercell environments obtained from the Rapid Update Cycle (2003) Wea. Forecasting, 18, pp. 1243-1261. , https://doi.org/10.1175/1520-0434(2003)018<1243:CPSWSE>2.0.CO;2
  • Thompson, R.L., Smith, B.T., Grams, J.S., Dean, A.R., Broyles, C., Convective modes for significant severe thunderstorms in the contiguous United States. Part II: Supercell and QLCS tornado environments (2012) Wea. Forecasting, 27, pp. 1136-1154. , https://doi.org/10.1175/WAF-D-11-00116.1
  • Trapp, R.J., (2013) Mesoscale-Convective Processes in the Atmosphere, p. 346. , Cambridge University Press
  • Trapp, R.J., Tessendorf, S.A., Godfrey, E.S., Brooks, H.E., Tornadoes from squall lines and bow echoes. Part I: Climatological distribution (2005) Wea. Forecasting, 20, pp. 23-34. , https://doi.org/10.1175/WAF-835.1
  • Uccellini, L.W., On the role of upper tropospheric jet streaks and leeside cyclogenesis in the development of low-level jets in the Great Plains (1980) Mon. Wea. Rev, 108, pp. 1689-1696. , https://doi.org/10.1175/1520-0493(1980)108<1689:OTROUT>2.0.CO;2
  • Vera, C., The South American low-level jet experiment (2006) Bull. Amer. Meteor. Soc, 87, pp. 63-78. , https://doi.org/10.1175/BAMS-87-1-63
  • Wurman, J., Straka, J., Rasmussen, E., Randall, M., Zahrai, A., Design and deployment of a portable, pencil-beam, pulsed, 3-cm Doppler radar (1997) J. Atmos. Oceanic Technol, 14, pp. 1502-1512. , https://doi.org/10.1175/1520-0426(1997)014<1502:DADOAP>2.0.CO;2
  • Zipser, E.J., Cecil, D.J., Liu, C., Nesbitt, S.W., Yorty, D.P., Where are the most intense thunderstorms on Earth? Bull (2006) Amer. Meteor. Soc, 87, pp. 1057-1072. , https://doi.org/10.1175/BAMS-87-8-1057

Citas:

---------- APA ----------
Mulholland, J.P., Nesbitt, S.W., Trapp, R.J., Rasmussen, K.L. & Salio, P.V. (2018) . Convective storm life cycle and environments near the Sierras de Córdoba, Argentina. Monthly Weather Review, 146(8), 2541-2557.
http://dx.doi.org/10.1175/MWR-D-18-0081.1
---------- CHICAGO ----------
Mulholland, J.P., Nesbitt, S.W., Trapp, R.J., Rasmussen, K.L., Salio, P.V. "Convective storm life cycle and environments near the Sierras de Córdoba, Argentina" . Monthly Weather Review 146, no. 8 (2018) : 2541-2557.
http://dx.doi.org/10.1175/MWR-D-18-0081.1
---------- MLA ----------
Mulholland, J.P., Nesbitt, S.W., Trapp, R.J., Rasmussen, K.L., Salio, P.V. "Convective storm life cycle and environments near the Sierras de Córdoba, Argentina" . Monthly Weather Review, vol. 146, no. 8, 2018, pp. 2541-2557.
http://dx.doi.org/10.1175/MWR-D-18-0081.1
---------- VANCOUVER ----------
Mulholland, J.P., Nesbitt, S.W., Trapp, R.J., Rasmussen, K.L., Salio, P.V. Convective storm life cycle and environments near the Sierras de Córdoba, Argentina. Mon. Weather Rev. 2018;146(8):2541-2557.
http://dx.doi.org/10.1175/MWR-D-18-0081.1