Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The Weather and Research Forecast model is tested over South America in different configurations to identify the one that gives the best estimates of observed surface variables. Systematic, nonsystematic, and total errors are computed for 48-h forecasts initialized with the NCEP Global Data Assimilation System (GDAS). There is no unique model design that best fits all variables over the whole domain, and nonsystematic errors for all configurations differ little from one another; such differences are in most cases smaller than the observed day-to-day variability. An ensemble mean consisting of runs with different parameterizations gives the best skill for the whole domain. Surface variables are highly sensitive to the choice of land surface models. Surface temperature is well represented by the Noah land model, but dewpoint temperature is best estimated by the simplest land surface model considered here, which specifies soil moisture based on climatology. This underlines the need for better understanding of humid processes at the subgrid scale. Surface wind errors decrease the intensity of the low-level jet, reducing expected heat and moisture advection over southeast South America (SESA), with negative precipitation errors over SESA and positive biases over the South Atlantic convergence zone (SACZ). This pattern of errors suggests feedbacks between wind errors, precipitation, and surface processes as follows: an increase of precipitation over the SACZ produces compensating descent in SESA, with more stable stratification, less rain, less soil moisture, and decreased rain. This is a clear example of how local errors are related to regional circulation, and suggests that improvement of model performance requires not only better parameterizations at the subgrid scales, but also improved regional models. © 2010 American Meteorological Society.

Registro:

Documento: Artículo
Título:WRF model sensitivity to choice of parameterization over South America: Validation against surface variables
Autor:Ruiz, J.J.; Saulo, C.; Nogués-Paegle, J.
Filiación:Centro de Investigaciones del Mar y la Atmósfera (CONICET/UBA), Departamento de Ciencias de la Atmósfera y los Océanos, FCEN-UBA, Buenos Aires, Argentina
Department of Meteorology, University of Utah, Salt Lake City, UT, United States
Palabras clave:Best estimates; Best fit; Convergence zones; Day-to-day variability; Dewpoint temperature; FORECAST model; Global data assimilation system; Highly sensitive; Land model; Land surface models; Local error; Low level jet; Model design; Model performance; Moisture advection; Nonsystematic errors; Parameterizations; Positive bias; Regional circulation; Regional model; South America; South Atlantic; Stable stratification; Subgrid scale; Surface process; Surface temperatures; Surface variables; Surface winds; Wind errors; WRF Model; Climatology; Data processing; Errors; Moisture determination; Parameterization; Rain; Soil moisture; Surface measurement; Systematic errors; Turbulent flow; Weather forecasting; Geologic models; climate prediction; climatology; data assimilation; ensemble forecasting; land surface; parameterization; precipitation (climatology); soil moisture; stratification; surface temperature; weather forecasting; South America
Año:2010
Volumen:138
Número:8
Página de inicio:3342
Página de fin:3355
DOI: http://dx.doi.org/10.1175/2010MWR3358.1
Título revista:Monthly Weather Review
Título revista abreviado:Mon. Weather Rev.
ISSN:00270644
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00270644_v138_n8_p3342_Ruiz

Referencias:

  • Aligo, E.A., Gallus W.A., Jr., Segal, M., Summer rainfall forecast spread in an ensemble initialized with different soil moisture analyses (2007) Wea. Forecasting, 22, pp. 299-214
  • Betts, A.K., A new convective adjustment scheme. Part I: Observational and theoretical basis (1986) Quart. J. Roy. Meteor. Soc., 112, pp. 677-691
  • Blázquez, J., Nuñez, M.N., Sensitivity to convective parameterization in the WRF regional model in southern South America (2009) Ninth Int. Conf. on Southern Hemisphere Meteorology and Oceanography, p. 6. , Preprints, Melbourne, Australia, Amer. Meteor. Soc
  • Case, J.L., Crosson, W.L., Kumar, S.V., Lapenta, W.M., Peters-Lidard, C.D., Impacts of high-resolution land surface initialization on regional sensible weather forecasts from the WRF model (2008) J. Hydrometeor., 9, pp. 1249-1266
  • Chen, F., Dudhia, J., Coupling an advanced land-surface/hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model description and implementation (2001) Mon. Wea. Rev., 129, pp. 569-585
  • Cheng, W.Y.Y., Steenburgh, W.J., Evaluation of surface sensible weather forecasts by the WRF and the Eta models over the western United States (2005) Wea. Forecasting, 20, pp. 812-821
  • Dudhia, J., Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model (1989) J. Atmos. Sci., 46, pp. 3077-3107
  • Ferrier, B.S., Jin, Y., Lin, Y., Black, T., Rogers, E., Dimego, G., Implementation of a new grid-scale cloud and precipitation scheme in the NCEP Eta model (2002) 15th Conf. on Numerical Weather Prediction, pp. 280-283. , Preprints, San Antonio, TX, Amer. Meteor. Soc
  • Gevaerd, R., Freitas, S., Longo, M., Soares Moreira, D., Da Silva Dias, M.A.F., Da Silva Dias, P.L., Operational soil moisture estimate for initialization of numerical weather forecast models. Part II: The effect of initial soil moisture and cumulus parameterization of a dry line convective system (in Portuguese) (2006) Rev. Brasil. Meteor., 21 (3 A), pp. 74-88
  • Grell, G.A., Devenyi, D., A generalized approach to parameterizing convection combining ensemble and data assimilation techniques (2002) Geophys. Res. Lett., 29, p. 1693. , doi:10.1029/2002GL015311
  • Hong, S.-Y., Pan, H.-L., Nonlocal boundary layer vertical diffusion in a medium-range forecast model (1996) Mon. Wea. Rev., 124, pp. 2322-2339
  • Janjic, Z.I., The step-mountain Eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes (1994) Mon. Wea. Rev., 122, pp. 927-945
  • Janjic, Z.I., (2002) Nonsingular Implementation of the Mellor-Yamada level 2.5 scheme in the CEP Meso model, p. 61. , NCEP Office Note 437
  • Jankov, I., Gallus, W.A., Segal, M., Shaw, B., Koch, S.E., The impact of different WRF model physical parameterizations and their interactions on warm season MCS rainfall (2005) Wea. Forecasting, 20, pp. 1048-1060
  • Kain, J.S., The Kain-Fritsch convective parameterization: An update (2004) J. Appl. Meteor., 43, pp. 170-181
  • Krishnamurti, T.N., Kishtawal, C.M., Larow, T.E., Bachiochi, D.R., Zhang, Z., Willford, C.E., Gadgil, S., Surendran, S., Improved weather and seasonal climate forecast from multi-model superensemble (1999) Science, 285, pp. 1548-1550
  • Liebmann, B., Kiladis, G.N., Vera, C.S., Saulo, A.C., Carvalho, L.M.V., Subseasonal variations of rainfall in South America in the vicinity of the low-level jet east of the Andes and comparison to those in the South Atlantic convergence zone (2004) J. Climate, 17, pp. 3829-3842
  • Mlawer, E.J., Taubman, S.J., Brown, P.D., Iacono, M.J., Clough, S.A., Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the long wave (1997) J. Geophys. Res., 102 (D14), pp. 16 663-16 682
  • Nogués-Paegle, J.N., Mo, K.C., Alternating wet and dry conditions over South America during summer (1997) Mon. Wea. Rev., 125, pp. 279-291
  • Penalba, O., Daily rainfall data over Argentina and Uruguay during SALLJEX (2004) CLIVAR Exchanges, pp. 29-31. , Coauthors, No. 9, International CLIVAR Project Office, Southampton, United Kingdom
  • Pessacg, N., (2008) Precipitation sensitivity experiments using WRF (in Spanish), p. 80. , Licensee dissertation, Dept. of Atmospheric and Oceanographic Sciences, University of Buenos Aires, Argentina
  • Raftery, A.E., Gneiting, T., Balabdaoui, F., Polakowski, Y.M., Using Bayesian model averaging to calibrate forecast ensembles (2005) Mon. Wea. Rev., 133, pp. 1155-1174
  • Ries, H., Schlünzen, K.H., Evaluation of a mesoscale model with different surface parameterizations and vertical resolutions for the Bay of Valencia (2009) Mon. Wea. Rev., 137, pp. 2646-2661
  • Rodell, M., The Global Land Data Assimilation System (2004) Bull. Amer. Meteor. Soc, 85, pp. 381-394
  • Ruiz, J.J., Saulo, A.C., Kalnay, E., Comparison of methods to generate probabilistic quantitative precipitation forecasts over South America (2009) Wea. Forecasting, 24, pp. 319-336
  • Salio, P., Nicolini, M., Saulo, A.C., Chaco low-level jet events characterization during the austral summer season by ERA reanalysis (2002) J. Geophys. Res., 107, p. 4816. , doi:10.1029/2001JD001315
  • Saulo, A.C., Cardazzo, S., Ruiz, J., Campetella, C., Rolla, A., Experimental forecast system at the Research Center for the sea and the atmosphere (in Spanish) (2008) Meteorologica, 33, pp. 83-97
  • Saulo, C., Ferreira, L., Nogués-Paegle, J., Seluchi, M., Ruiz, J., Land-atmosphere interactions during a northwestern Argentina low event (2010) Mon. Wea. Rev., 138, pp. 2481-2498
  • Seluchi, M.E., Chou, S.C., Adjustment of the Betts-Miller convective parameterization in the ETA/CPTEC regional model (in Spanish) (2000) Meteorologica, 25, pp. 45-56
  • Shukla, J., Hagedorn, R., Hoskins, B., Kinter, J., Marotzke, J., Miller, M., Palmer, T.N., Slingo, J., Revolution in climate prediction is both necessary and possible: A declaration at the world modelling summit for climate prediction (2009) Bull. Amer. Meteor. Soc., 90, pp. 175-178
  • Silva Dias, P.L., Soares Moreira, D., Neto, G.D., The MASTER Model Ensemble System (MSMES) (2006) Eighth Int. Conf. on Southern Hemisphere Meteorology and Oceanography, p. 4. , Preprints, Foz do Iguaxcu, Brazil, Amer. Meteor. Soc
  • Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D.M., Wang, W., Powers, J.G., (2006) A description of the Advanced Research WRF version 2, p. 100. , NCAR Tech Note NCAR TN-4681STR
  • Smirnova, T.G., Brown, J.M., Benjamin, S.G., Performance of different soil model configurations in simulating ground surface temperature and surface fluxes (1997) Mon. Wea. Rev., 125, pp. 1870-1884
  • Vera, C., The South American low-level jet experiment (2006) Bull. Amer. Meteor. Soc, 87, pp. 63-77. , Coauthors
  • Wilks, D.S., (2006) Statistical Methods in Atmospheric Sciences, p. 627. , 2nd ed. Academic Press

Citas:

---------- APA ----------
Ruiz, J.J., Saulo, C. & Nogués-Paegle, J. (2010) . WRF model sensitivity to choice of parameterization over South America: Validation against surface variables. Monthly Weather Review, 138(8), 3342-3355.
http://dx.doi.org/10.1175/2010MWR3358.1
---------- CHICAGO ----------
Ruiz, J.J., Saulo, C., Nogués-Paegle, J. "WRF model sensitivity to choice of parameterization over South America: Validation against surface variables" . Monthly Weather Review 138, no. 8 (2010) : 3342-3355.
http://dx.doi.org/10.1175/2010MWR3358.1
---------- MLA ----------
Ruiz, J.J., Saulo, C., Nogués-Paegle, J. "WRF model sensitivity to choice of parameterization over South America: Validation against surface variables" . Monthly Weather Review, vol. 138, no. 8, 2010, pp. 3342-3355.
http://dx.doi.org/10.1175/2010MWR3358.1
---------- VANCOUVER ----------
Ruiz, J.J., Saulo, C., Nogués-Paegle, J. WRF model sensitivity to choice of parameterization over South America: Validation against surface variables. Mon. Weather Rev. 2010;138(8):3342-3355.
http://dx.doi.org/10.1175/2010MWR3358.1