Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Deep convection in the Tunuyán Valley region (33°-34°S, 69°-70°W) on the eastern side of the highest peaks of the Andes Mountains is sometimes associated with damaging hail. Understanding the physical mechanisms responsible for the occurrence of deep convection in that region is therefore a central part of the development of hail suppression projects. In this paper, a case of deep convection that occurred on 22 January 2001 is studied in detail through a combined analysis of radar, satellite, and radiosonde data and numerical simulations using a nonhydrostatic mesoscale atmospheric (Meso-NH) model. The time evolution and stability characteristics are first documented using the data. In order to get insight into the main causes for the deep convection event, numerical simulations of that day were performed. These results are compared with the results corresponding to conditions of 4 January 2001 when no deep convection occurred. The comparison between the 2 days strongly suggests that the deep convection event occurred because of the simultaneous presence of anabatic winds, accumulation of moist enthalpy, and the stability conditions. The present results should be helpful in designing future observational programs in the region. © 2004 American Meteorological Society.

Registro:

Documento: Artículo
Título:A deep convection event above the Tunuyán Valley near the Andes Mountains
Autor:de la Torre, A.; Daniel, V.; Tailleux, R.; Teitelbaum, H.
Filiación:Departamento de Física, Facultad de Ciencias Exactas y Nat., Universidad de Buenos Aires, Pabellon I, Buenos Aires 1428, Argentina
Lab. de Meteorol. Dynamique du CNRS, Ecole Normale Superiéure, Paris, France
Lab. de Meteorol. Dynamique du CNRS, Universite Pierre et Marie Curie, Paris, France
Palabras clave:Computer simulation; Enthalpy; Precipitation (meteorology); Radar; Satellite communication systems; Wind; Deep convection; Hail suppression; Nonhydrostatic mesoscale atmospheric models; Radiosonde data; Heat convection; convection; hail; numerical model; precipitation (climatology); severe weather; Andes; South America
Año:2004
Volumen:132
Número:9
Página de inicio:2259
Página de fin:2267
DOI: http://dx.doi.org/10.1175/1520-0493(2004)132<2259:ADCEAT>2.0.CO;2
Título revista:Monthly Weather Review
Título revista abreviado:Mon. Weather Rev.
ISSN:00270644
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00270644_v132_n9_p2259_delaTorre

Referencias:

  • Adedodun, J.A., Holmgren, B., Acoustic sounder detection of anabatic/katabatic winds in Abisko, N. Sweden (1991) Renewable Energy, 1, pp. 77-89
  • Banta, R.M., Daytime boundary layer evolution over mountainous terrain. Part II: Numerical studies of upslope flow duration (1986) Mon. Wea. Rev., 114, pp. 1112-1130
  • Biswas, A.K., Jayaweera, W., NOAA-3 satellite observations of thunderstorms in Alaska (1976) Mon. Wea. Rev., 104, pp. 292-297
  • Caballero, R., Lavagnini, A., A numerical investigation of the sea breeze and slope flows around Rome (2002) Nuovo Cimento, 25 C, pp. 287-304
  • Egger, J., Thermally forced circulations in a valley (1981) Geophys. Astrophys. Dyn., 130, pp. 255-279
  • Emanuel, K.A., (1994) Atmospheric Convection, p. 580. , Oxford University Press
  • Gallee, H., Pettre, P., Dynamical constraints on katabatic wind cessation in Adelie Land, Antartica (1998) J. Atmos. Sci., 55, pp. 1755-1770
  • Geiger, R., (1971) The Climate Near the Ground, p. 611. , Harvard University Press
  • Klaic, Z.B., Nittis, T., Kos, I., Moussiopoulos, N., Modification of the local winds due to hypothetical urbanization of the Zagreb surroundings (2002) Meteor. Atmos. Phys., 79, pp. 1-12
  • Lafore, J.P., The Meso-NH atmospheric simulation system. Part I: Adiabatic formulation and control simulations (1998) Ann. Geophys., 16, pp. 90-100. , Coauthors
  • Lee, S.H., Kimura, F., Comparative studies in the local circulations induced by land-use and by topography (2001) Bound.-Layer Meteor., 101, pp. 157-182
  • Lin, C.Y., Chen, C.S., A study of orographic effects on mountain-generated precipitation systems under weak synoptic forcing (2002) Meteor. Atmos. Phys., 81, pp. 1-25
  • Mahrer, Y., Pielke, R.A., The effects of topography on land and sea breezes in a two-dimensional mesoscale model (1977) Mon. Wea. Rev., 105, pp. 1152-1162
  • Mather, G.K., Dixon, M.J., deJager, J.M., Assessing the potential for rain augmentation - The Nelspruit randomized convective cloud seeding experiment (1996) J. Appl. Meteor., 35, pp. 1465-1482
  • McNider, R.T., Pielke, R.A., Numerical simulation of slope and mountain flows (1984) J. Climate Appl. Meteor., 23, pp. 1441-1453
  • Neff, W.D., King, C.W., Observations of complex-terrain flows using acoustic sounders: Experiments, topography and winds (1987) Bound.-Layer Meteor., 40, pp. 363-392
  • Parker, D.J., The response of CAPE and CIN to tropospheric thermal variations (2002) Quart. J. Roy. Meteor. Soc., 128, pp. 119-130
  • Post, M.J., Neff, W.D., Doppler lidar measurements of winds in a narrow mountain valley (1986) Bull. Amer. Meteor. Soc., 67, pp. 274-281
  • Ramanathan, N., Srinivasan, K., Simulation of airflow in Kashmir Valley for a summer day (1998) J. Appl. Meteor., 37, pp. 497-508
  • Richard, E., Cosma, S., Tabary, P., Pinty, J.-P., Hagen, M., High-resolution numerical simulations of the convective system observed in the Lago Maggiore area on 17 September 1999 (MAP IOP2a) (2003) Quart. J. Roy. Meteor. Soc., 129, pp. 543-563
  • Tanaka, H.L., Nohara, D., Yokoi, M., Numerical simulation of wind hole circulation and summertime ice formation at Ice Valley in Korea and Nakayama in Fukushima, Japan (2000) J. Meteor. Soc. Japan, 78, pp. 611-630
  • Tian, W.S., Parker, D.J., Two-dimensional simulation of orographic effects on mesoscale boundary-layer convection (2002) Quart. J. Roy. Meteor. Soc., 128, pp. 1929-1952
  • Whiteman, C.D., Breakup of temperature inversions in deep mountain valleys: Part I. Observations (1982) J. Appl. Meteor., 21, pp. 270-289
  • Yeh, H.C., Chen, Y.L., Characteristics of rainfall distributions over Taiwan during the Taiwan Area Mesoscale Experiment (TAMEX) (1998) J. Appl. Meteor., 37, pp. 1457-1469

Citas:

---------- APA ----------
de la Torre, A., Daniel, V., Tailleux, R. & Teitelbaum, H. (2004) . A deep convection event above the Tunuyán Valley near the Andes Mountains. Monthly Weather Review, 132(9), 2259-2267.
http://dx.doi.org/10.1175/1520-0493(2004)132<2259:ADCEAT>2.0.CO;2
---------- CHICAGO ----------
de la Torre, A., Daniel, V., Tailleux, R., Teitelbaum, H. "A deep convection event above the Tunuyán Valley near the Andes Mountains" . Monthly Weather Review 132, no. 9 (2004) : 2259-2267.
http://dx.doi.org/10.1175/1520-0493(2004)132<2259:ADCEAT>2.0.CO;2
---------- MLA ----------
de la Torre, A., Daniel, V., Tailleux, R., Teitelbaum, H. "A deep convection event above the Tunuyán Valley near the Andes Mountains" . Monthly Weather Review, vol. 132, no. 9, 2004, pp. 2259-2267.
http://dx.doi.org/10.1175/1520-0493(2004)132<2259:ADCEAT>2.0.CO;2
---------- VANCOUVER ----------
de la Torre, A., Daniel, V., Tailleux, R., Teitelbaum, H. A deep convection event above the Tunuyán Valley near the Andes Mountains. Mon. Weather Rev. 2004;132(9):2259-2267.
http://dx.doi.org/10.1175/1520-0493(2004)132<2259:ADCEAT>2.0.CO;2