Artículo

Achour, D.; Dahia, E.; Turco, P."Lipschitz p-compact mappings" (2019) Monatshefte fur Mathematik
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We introduce the notion of Lipschitz p-compact operators. We show that they can be seen as a natural extension of the linear p-compact operators of Sinha and Karn and we transfer some properties of the linear case into the Lipschitz setting. Also, we introduce the notions of Lipschitz-free p-compact operators and Lipschitz locally p-compact operators. We compare all these three notions and show different properties. Finally, we exhibit examples to show that these three notions are different. © 2019, Springer-Verlag GmbH Austria, part of Springer Nature.

Registro:

Documento: Artículo
Título:Lipschitz p-compact mappings
Autor:Achour, D.; Dahia, E.; Turco, P.
Filiación:Laboratoire d’Analyse Fonctionnelle et Géométrie des Espaces, University of M’sila, M’sila, 28000, Algeria
Ecole Normale Supérieure de Bousaada, Bousaada, 28001, Algeria
IMAS-UBA-CONICET, CONICET and Universidad de Buenos Aires, Pab I. Facultad de Ciencias Exactas y Naturales, UBA, Buenos Aires, 1428, Argentina
Palabras clave:Lipschitz operators; Lipschitz p-compact operators; Lipschitz-free p-compact mappings; Locally p-compact mappings
Año:2019
DOI: http://dx.doi.org/10.1007/s00605-018-1252-1
Handle:http://hdl.handle.net/20.500.12110/paper_00269255_v_n_p_Achour
Título revista:Monatshefte fur Mathematik
Título revista abreviado:Monatsh. Math.
ISSN:00269255
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00269255_v_n_p_Achour

Referencias:

  • Achour, D., Rueda, P., Sánchez-Pérez, E.A., Yahi, R., Lipchitz operator ideals and the approximation property (2016) J. Math. Anal. Appl., 436, pp. 217-236
  • Ain, K., Lillemets, R., Oja, E., Compact operators which are defined by $\\ell _p$-spaces (2012) Quaest. Math., 35, pp. 145-159
  • Cabrera-Padilla, M., Jiménez-Vargas, A., A new approach on Lipschitz compact operators (2016) Topol. Appl., 203, pp. 22-31
  • Cabrera-Padilla, M., Chávez-Domínguez, A., Jiménez-Vargas, A., Villegas-Vallecillos, M., Maximal Banach ideals of Lipschitz maps (2016) Ann. Funct. Anal., 7, pp. 593-608
  • Cohen, J.S., Absolutely $p$-summing, $p$-nuclear operators and their conjugates (1973) Math. Ann., 201, pp. 177-200
  • Delgado, J.M., Piñeiro, C., Serrano, E., Operators whose adjoints are quasi $p$-nuclear (2010) Stud. Math., 197, pp. 291-304
  • Defant, A., Floret, K., (1993) Tensor norms and operators ideal, , North Holland Publishing Co., Amsterdam
  • Farmer, J., Johnson, W., Lipschitz p-summing operators (2009) Proc. Am. Math. Soc., 137, pp. 2989-2995
  • Galicer, D., Lassalle, S., Turco, P., The ideal of $p$-compact operators: a tensor product approach (2012) Stud. Math., 2828, pp. 269-286
  • Godard, A., Tree metrics and their Lipschitz-free spaces (2010) Proc. Am. Math. Soc., 138 (12), pp. 4311-4320
  • Godefroy, G., A survey on Lipschitz-free Banach spaces (2015) Comment. Math., 55 (2), pp. 89-118
  • Grothendieck, A., Produits tensoriels topologiques et espaces nucléaires (1955) Mem. Am. Math. Soc., 1955 (16), p. 140. , (French
  • Jiménez-Vargas, A., Sepulcre, J.M., Villegas-Vallecillos, M., Lipschitz compact operators (2014) J. Math. Anal. Appl., 415, pp. 889-901
  • Kalton, N.J., Spaces of Lipschitz and Hölder functions and their applications (2004) Collect. Math., 55, pp. 171-217
  • Lassalle, S., Turco, P., On $p$-compact mappings and the $p$-approximation properties (2012) J. Math. Anal. Appl., 389, pp. 1204-1221
  • Pietschideals, A.O., (1978); Persson, A., Pietsch, A., $p$-nuklear und $p$-integrale Abbildungen in Banachräumen (1969) Stud. Math., 33, pp. 19-62
  • Pietsch, A., The ideal of $p$-compact operators and its maximal hull (2014) Proc. Am. Math. Soc., 142 (2), pp. 519-530
  • Saadi, K., On the composition ideals of Lipschitz mappings (2017) Banach J. Math. Anal., 11, pp. 825-840
  • Sawashima, I., (1975) Methods of Lipschitz Duals, 419, pp. 247-259. , Lecture Notes Ec. Math Sust, Springer, Berlin
  • Sinha, D.P., Karn, A.K., Compact operators whose adjoints factor through subspaces of $\\ell _{p}$ (2002) Stud. Math., 150, pp. 17-33
  • Weaver, N., (1999) Lipschitz Algebras, , World Scientific Publishing Co., Inc., River Edge
  • Yahi, R., Achour, D., Rueda, P., Absolutely summing Lipschitz conjugates (2016) Mediterr. J. Math., 13, pp. 1949-1961

Citas:

---------- APA ----------
Achour, D., Dahia, E. & Turco, P. (2019) . Lipschitz p-compact mappings. Monatshefte fur Mathematik.
http://dx.doi.org/10.1007/s00605-018-1252-1
---------- CHICAGO ----------
Achour, D., Dahia, E., Turco, P. "Lipschitz p-compact mappings" . Monatshefte fur Mathematik (2019).
http://dx.doi.org/10.1007/s00605-018-1252-1
---------- MLA ----------
Achour, D., Dahia, E., Turco, P. "Lipschitz p-compact mappings" . Monatshefte fur Mathematik, 2019.
http://dx.doi.org/10.1007/s00605-018-1252-1
---------- VANCOUVER ----------
Achour, D., Dahia, E., Turco, P. Lipschitz p-compact mappings. Monatsh. Math. 2019.
http://dx.doi.org/10.1007/s00605-018-1252-1