Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


Wavelength selection is a critical step in multivariate calibration. Variable selection methods are used to find the most relevant variables, leading to improved prediction accuracy, while simplifying both the built models and their interpretation. In addition, different spectrophotometer designs and measurement principles result in non-destructive technologies applied in many fields, such as agriculture, food chemistry and pharmaceutics. However, an on-chip or portable device does not allow acquiring data from a large number of wavelengths. Therefore, the most informative combination of a limited number of variables should be selected. The Replacement Orthogonal Wavelengths Selection (ROWS) method is described here as a new method. This algorithm aims at selecting as few wavelengths as possible, while keeping or improving the prediction performance of the model, compared to when no variable selection is applied. The ROWS is applied to several near infrared spectroscopic data sets leading to improved analytical figures of merits upon wavelength selection in comparison to a built PLS model using entire spectral range. The performance of the ROWS-MLR method was compared to the FCAM-PLS method. The resulting models are not significantly different from those of FCAM-PLS; however, it involves a significantly smaller amount of variables. © 2018


Documento: Artículo
Título:Replacement Orthogonal Wavelengths Selection as a new method for multivariate calibration in spectroscopy
Autor:Goodarzi, M.; Bacelo, D.E.; Fioressi, S.E.; Duchowicz, P.R.
Filiación:Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Belgrano, Villanueva 1324, Buenos Aires, C1426BMJ, Argentina
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET, UNLP, Diag. 113 y 64, C.C. 16, Sucursal 4, La Plata, 1900, Argentina
Palabras clave:FCAM-PLS; Near-Infrared spectroscopy; Orthogonalization; Replacement Method; ROWS-MLR
Página de inicio:872
Página de fin:882
Título revista:Microchemical Journal
Título revista abreviado:Microchem. J.


  • McKelvy, M.L., Britt, T.R., Davis, B.L., Gillie, J.K., Graves, F.B., Lentz, L.A., Infrared spectroscopy (1998) Anal. Chem., 70, pp. 119-178
  • Pasquini, C., Near infrared spectroscopy: a mature analytical technique with new perspectives–a review (2018) Anal. Chim. Acta, 1026, pp. 8-36
  • Pieters, S., Saeys, W., Van den Kerkhof, T., Goodarzi, M., Hellings, M., De Beer, T., Robust calibrations on reduced sample sets for API content prediction in tablets: definition of a cost-effective NIR model development strategy (2013) Anal. Chim. Acta, 761, pp. 62-70
  • Rinnan, Å., van den Berg, F., Engelsen, S.B., Review of the most common pre-processing techniques for near-infrared spectra (2009) TrAC Trends Anal. Chem., 28, pp. 1201-1222
  • Agelet, L.E., Hurburgh, C.R., Jr., A tutorial on near infrared spectroscopy and its calibration (2010) Crit. Rev. Anal. Chem., 40, pp. 246-260
  • Yun, Y.-H., Wang, W.-T., Tan, M.-L., Liang, Y.-Z., Li, H.-D., Cao, D.-S., A strategy that iteratively retains informative variables for selecting optimal variable subset in multivariate calibration (2014) Anal. Chim. Acta, 807, pp. 36-43
  • Goodarzi, M., Vander Heyden, Y., Funar-Timofei, S., Towards better understanding of feature-selection or reduction techniques for quantitative structure–activity relationship models (2013) TrAC Trends Anal. Chem., 42, pp. 49-63
  • Goodarzi, M., Dejaegher, B., Heyden, Y.V., Feature selection methods in QSAR studies (2012) J. AOAC Int., 95, pp. 636-651
  • Chen, M., Khare, S., Huang, B., Zhang, H., Lau, E., Feng, E., Recursive wavelength-selection strategy to update near-infrared spectroscopy model with an industrial application (2013) Ind. Eng. Chem. Res., 52, pp. 7886-7895
  • Xiaobo, Z., Jiewen, Z., Povey, M.J., Holmes, M., Hanpin, M., Variables selection methods in near-infrared spectroscopy (2010) Anal. Chim. Acta, 667, pp. 14-32
  • Araújo, M.C.U., Saldanha, T.C.B., Galvao, R.K.H., Yoneyama, T., Chame, H.C., Visani, V., The successive projections algorithm for variable selection in spectroscopic multicomponent analysis (2001) Chemom. Intell. Lab. Syst., 57, pp. 65-73
  • Centner, V., Massart, D.-L., de Noord, O.E., de Jong, S., Vandeginste, B.M., Sterna, C., Elimination of uninformative variables for multivariate calibration (1996) Anal. Chem., 68, pp. 3851-3858
  • Chong, I.-G., Jun, C.-H., Performance of some variable selection methods when multicollinearity is present (2005) Chemom. Intell. Lab. Syst., 78, pp. 103-112
  • Hörchner, U., Kalivas, J.H., Further investigation on a comparative study of simulated annealing and genetic algorithm for wavelength selection (1995) Anal. Chim. Acta, 311, pp. 1-13
  • Teofilo, R.F., Martins, J.P.A., Ferreira, M.M., Sorting variables by using informative vectors as a strategy for feature selection in multivariate regression (2009) J. Chemom., 23, pp. 32-48
  • Leardi, R., Gonzalez, A.L., Genetic algorithms applied to feature selection in PLS regression: how and when to use them (1998) Chemom. Intell. Lab. Syst., 41, pp. 195-207
  • Kasemsumran, S., Du, Y.P., Maruo, K., Ozaki, Y., Improvement of partial least squares models for in vitro and in vivo glucose quantifications by using near-infrared spectroscopy and searching combination moving window partial least squares (2006) Chemom. Intell. Lab. Syst., 82, pp. 97-103
  • Andries, J.P., Vander Heyden, Y., Buydens, L.M., Improved variable reduction in partial least squares modelling based on predictive-property-ranked variables and adaptation of partial least squares complexity (2011) Anal. Chim. Acta, 705, pp. 292-305
  • Garrido Frenich, A., Jouan-Rimbaud, D., Massart, D., Kuttatharmmakul, S., Martinez Galera, M., Martinez Vidal, J., Wavelength selection method for multicomponent spectrophotometric determinations using partial least squares (1995) Analyst, 120, pp. 2787-2792
  • Brown, P.J., Wavelength selection in multicomponent near-infrared calibration (1992) J. Chemom., 6, pp. 151-161
  • Yun, Y.-H., Li, H.-D., Wood, L.R., Fan, W., Wang, J.-J., Cao, D.-S., An efficient method of wavelength interval selection based on random frog for multivariate spectral calibration (2013) Spectrochim. Acta A, 111, pp. 31-36
  • Nielsen, J.P., Pedersen, D.K., Munck, L., Development of nondestructive screening methods for single kernel characterization of wheat (2003) Cereal Chem., 80, pp. 274-280
  • Duchowicz, P.R., Castro, E.A., Fernández, F.M., Alternative algorithm for the search of an optimal set of descriptors in QSAR-QSPR studies (2006) MATCH Commun. Math. Comput. Chem., 55, pp. 179-192
  • Duchowicz, P.R., Talevi, A., Bruno-Blanch, L.E., Castro, E.A., New QSPR study for the prediction of aqueous solubility of drug-like compounds (2008) Bioorg. Med. Chem., 16, pp. 7944-7955
  • Goodarzi, M., Duchowicz, P.R., Wu, C.H., Fernández, F.M., Castro, E.A., New hybrid genetic based support vector regression as QSAR approach for analyzing flavonoids-GABA(A) complexes (2009) J. Chem. Inf. Model., 49, pp. 1475-1485
  • Duchowicz, P.R., Giraudo, M.A., Castro, E.A., Pomilio, A.B., Amino acid profiles and quantitative structure-property relationship models as markers for Merlot and Torrontés wines (2013) Food Chem., 140, pp. 210-216
  • Duchowicz, P.R., Bennardi, D.O., Bacelo, D.E., Bonifazi, E.L., Rios-Luci, C., Padrón, J.M., QSAR on antiproliferative naphthoquinones based on a conformation-independent approach (2014) Eur. J. Med. Chem., 77, pp. 176-184
  • Randic, M., Resolution of ambiguities in structure-property studies by use of orthogonal descriptors (1991) J. Chem. Inf. Comput. Sci., 31, pp. 311-320
  • Randic, M., Orthogonal molecular descriptors (1991) Nouv. J. Chim., 15, pp. 517-525
  • Andries, J.P., Vander Heyden, Y., Buydens, L.M., Predictive-property-ranked variable reduction in partial least squares modelling with final complexity adapted models: comparison of properties for ranking (2013) Anal. Chim. Acta, 760, pp. 34-45
  • Schüürmann, G., Ebert, R.U., Chen, J., Wang, B., Kuhne, R., External validation and prediction employing the predictive squared correlation coefficient test set activity mean vs. training set activity mean (2008) J. Chem. Inf. Model., 48, pp. 2140-2145
  • Roy, K., Mitra, I., On various metrics used for validation of predictive QSAR models with applications in virtual screening and focused library design (2011) Comb. Chem. High Throughput Screen., 14, p. 450
  • Chirico, N., Gramatica, P., Real external predictivity of QSAR models: how to evaluate it? Comparison of different validation criteria and proposal of using the concordance correlation coefficient (2011) J. Chem. Inf. Model., 51, pp. 2320-2335
  • Konovalov, D.A., Llewellyn, L.E., Heyden, Y.V., Coomans, D., Robust cross-validation of linear regression QSAR models (2008) J. Chem. Inf. Model., 48, p. 2081
  • Golbraikh, A., Tropsha, A., Beware of q2! (2002) J. Mol. Graph. Model., 20, pp. 269-276
  • Rücker, C., Rücker, G., Meringer, M., Y-randomization and its variants in QSPR/QSAR (2007) J. Chem. Inf. Model., 47, pp. 2345-2357
  • Massart, D.L., Vandeginste, B.G.M., Buydens, L.M.C., de Jong, S., Lewi, P.J., Smeyers-Verbeke, J., Handbook of Chemometrics and Qualimetrics, Part A (1997), Elsevier; Cederkvist, H.R., Aastveit, A.H., Næs, T., A comparison of methods for testing differences in predictive ability (2005) J. Chemom., 19, pp. 500-509
  • Corder, G., Foreman, D., Nonparametric statistics: an introduction (2009) Nonparametric Statistics for Non-statisticians: A Step-by-Step Approach, pp. 101-111. , John Wiley & Sons Hoboken, NJ, USA
  • Goicoechea, H.C., Olivieri, A.C., A new family of genetic algorithms for wavelength interval selection in multivariate analytical spectroscopy (2003) J. Chemom., 17, pp. 338-345
  • Jiang, J.-H., Berry, R.J., Siesler, H.W., Ozaki, Y., Wavelength interval selection in multicomponent spectral analysis by moving window partial least-squares regression with applications to mid-infrared and near-infrared spectroscopic data (2002) Anal. Chem., 74, pp. 3555-3565
  • Abdi, H., Partial least squares regression and projection on latent structure regression (PLS regression) (2010) Wiley Interdiscip. Rev. Comput. Stat., 2, pp. 97-106
  • Goodarzi, M., Freitas, M.P., Vander Heyden, Y., Linear and nonlinear quantitative structure-activity relationship modeling of the HIV-1 reverse transcriptase inhibiting activities of thiocarbamates (2011) Anal. Chim. Acta, 705, pp. 166-173
  • Tsenkova, R., Atanassova, S., Toyoda, K., Ozaki, Y., Itoh, K., Fearn, T., Near-infrared spectroscopy for dairy management: measurement of unhomogenized milk composition (1999) J. Dairy Sci., 82, pp. 2344-2351
  • Chen, T., Martin, E., Bayesian linear regression and variable selection for spectroscopic calibration (2009) Anal. Chim. Acta, 631, pp. 13-21
  • Pedersen, D.K., Martens, H., Nielsen, J.P., Engelsen, S.B., Near-infrared absorption and scattering separated by extended inverted signal correction (EISC): analysis of near-infrared transmittance spectra of single wheat seeds (2002) Soc. Appl. Spectr., 56, pp. 1206-1214
  • Khodabux, K., L'Omelette, M.S.S., Jhaumeer-Laulloo, S., Ramasami, P., Rondeau, P., Chemical and near-infrared determination of moisture, fat and protein in tuna fishes (2007) Food Chem., 102, pp. 669-675
  • Apan, A., Kelly, R., Phinn, S., Strong, W., Lester, D., Butler, D., Predicting grain protein content in wheat using hyperspectral sensing of in-season crop canopies and partial least squares regression (2006) Int. J. Geoinf., 2, pp. 93-108


---------- APA ----------
Goodarzi, M., Bacelo, D.E., Fioressi, S.E. & Duchowicz, P.R. (2019) . Replacement Orthogonal Wavelengths Selection as a new method for multivariate calibration in spectroscopy. Microchemical Journal, 145, 872-882.
---------- CHICAGO ----------
Goodarzi, M., Bacelo, D.E., Fioressi, S.E., Duchowicz, P.R. "Replacement Orthogonal Wavelengths Selection as a new method for multivariate calibration in spectroscopy" . Microchemical Journal 145 (2019) : 872-882.
---------- MLA ----------
Goodarzi, M., Bacelo, D.E., Fioressi, S.E., Duchowicz, P.R. "Replacement Orthogonal Wavelengths Selection as a new method for multivariate calibration in spectroscopy" . Microchemical Journal, vol. 145, 2019, pp. 872-882.
---------- VANCOUVER ----------
Goodarzi, M., Bacelo, D.E., Fioressi, S.E., Duchowicz, P.R. Replacement Orthogonal Wavelengths Selection as a new method for multivariate calibration in spectroscopy. Microchem. J. 2019;145:872-882.