Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

To evaluate the Myriophyllum aquaticum and Potamogeton pusillus macrophytes as indicator organisms of heavy metal pollution in biomonitoring studies of the aquatic ecosystem, the aim of this study was to determine the Co, Cu, Fe, Mn, Ni, Pb and Zn accumulation in leaves of the those species and the possible relationship to water pollution by these metals. Surface water, sediment and plants were collected at 10 sampling sites of the Ctalamochita river (Argentina). Cooper and Pb concentrations exceeded the limits established for the protection of aquatic life defined by Argentina Legislation (Cu: 2.0μgL-1, Pb: 2.0μgL-1) and international norms (Cu: 1.6μgL-1, Pb: 2.5μgL-1) in surface water, while Cu and Zn exceeded the limit for ecological screening levels (Cu: 31.6mgkg-1, Zn: 121.0mgkg-1) in sediment. Heavy metal concentrations were found to be higher downstream of Río Tercero city in water and sediments samples, probably related to the contribution of pollutants from the effluent discharge of the city. Both species revealed a high capacity to accumulate heavy metals in its tissues, in areas of the river with higher heavy metals values in the abiotic compartments. Particularly, high accumulation of Co, Cu, Ni and Zn in P. pusillus correlated with their concentrations in sediments and Co, Cu, Mn and Zn accumulation in M. aquaticum correlated with the concentrations of these metals in water. These macrophytes reflect spatial variations of metals in water and sediments of the Ctalamochita river; therefore they are of potential use as heavy metal bioindicators of river pollution. © 2015 Elsevier B.V.

Registro:

Documento: Artículo
Título:The macrophytes Potamogeton pusillus L. and Myriophyllum aquaticum (Vell.) Verdc. as potential bioindicators of a river contaminated by heavy metals
Autor:Harguinteguy, C.A.; Noelia Cofré, M.; Fernández-Cirelli, A.; Luisa Pignata, M.
Filiación:Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET and Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Ciudad Universitaria (X5016GCA), Avda. Vélez Sarsfield 1611, Córdoba, Argentina
Instituto de Investigaciones en Producción Animal (INPA) UBA-CONICET, Centro de Estudios Transdisciplinarios del Agua (CETA) and Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Av. Chorroarín 280 (C1427CWO), Buenos Aires, Argentina
Palabras clave:Aquatic plants; Bioaccumulation; Heavy metals; Pollution; River
Año:2016
Volumen:124
Página de inicio:228
Página de fin:234
DOI: http://dx.doi.org/10.1016/j.microc.2015.08.014
Título revista:Microchemical Journal
Título revista abreviado:Microchem. J.
ISSN:0026265X
CODEN:MICJA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0026265X_v124_n_p228_Harguinteguy

Referencias:

  • Wildman, R.A., Pratson, L.F., DeLeon, M., Hering, J.G., Physical, chemical, and mineralogical characteristics of a reservoir sediment delta (Lake Powell, USA) and implications for water quality during low water level (2011) J. Environ. Qual., 40, pp. 575-586
  • Kabata-Pendias, A., Pendias, H., (2001) Trace Elements in Soils and Plants, , CRC Press, London
  • Prasad, M.N.V., (2004) Heavy Metal Stress in Plants: From Biomolecules to Ecosystems, , Springer Verlag
  • Jergentz, S., Mugni, H., Bonetto, C., Schulz, R., Assessment of insecticide contamination in runoff and stream water of small agricultural streams in the main soybean area of Argentina (2005) Chemosphere, 61, pp. 817-826
  • Schreiber, R., Harguinteguy, C., Manetti, M., Dynamics of organochlorine contaminants in surface water and in Myriophyllum aquaticum plants of the River Xanaes in Central Argentina during the annual dry season (2013) Arch. Environ. Contam. Toxicol., 65, pp. 466-473
  • Jackson, L., Paradigms of metal accumulation in rooted aquatic vascular plants (1998) Sci. Total Environ., 219, pp. 223-231
  • Cardwell, A., Hawker, D.W., Greenway, M., Metal accumulation in aquatic macrophytes from southeast Queensland, Australia (2002) Chemosphere, 48, pp. 653-663
  • Peng, K., Luo, C., Lou, L., Li, X., Shen, Z., Bioaccumulation of heavy metals by the aquatic plants Potamogeton pectinatus L. and Potamogeton malaianus Miq. and their potential use for contamination indicators and in wastewater treatment (2008) Sci. Total Environ., 392, pp. 22-29
  • Fritioff, A., Greger, M., Uptake and distribution of Zn, Cu, Cd, and Pb in an aquatic plant Potamogeton natans (2006) Chemosphere, 63, pp. 220-227
  • Zhou, Q., Zhang, J., Fu, J., Shi, J., Jiang, G., Biomonitoring: an appealing tool for assessment of metal pollution in the aquatic ecosystem (2008) Anal. Chim. Acta, 606, pp. 135-150
  • Nimptsch, J., Wunderlin, D., Dollan, A., Pflugmacher, S., Antioxidant and biotransformation enzymes in as biomarkers of heavy metal exposure and eutrophication in Suquía River basin (2005) Chemosphere, 61, pp. 147-157
  • Monferrán, M.V., Pignata, M.L., Wunderlin, D.A., Enhanced phytoextraction of chromium by the aquatic macrophyte Potamogeton pusillus in presence of copper (2012) Environ. Pollut., 161, pp. 15-22
  • Harguinteguy, C.A., Schreiber, R., Pignata, M.L., Myriophyllum aquaticum as a biomonitor of water heavy metal input related to agricultural activities in the Xanaes River (Córdoba, Argentina) (2013) Ecol. Indic., 27, pp. 8-16
  • http://www.smn.gov.ar/, Servicio Meteorológico Nacional, Argentina. URL: (accessed on 2015.03.29); Provincial Census (Censo Provincial), , http://estadistica.cba.gov.ar/, (accessed on 2015.03.29)
  • Wannaz, E.D., Harguinteguy, C.A., Jasan, R., Plá, R.R., Pignata, M.L., Identification of atmospheric trace-element sources by passive biomonitoring employing PCA and variogram analysis (2008) Int. J. Environ. Anal. Chem., 88, pp. 229-243
  • Rodriguez, J.H., Weller, S.B., Wannaz, E.D., Klumpp, A., Pignata, M.L., Air quality biomonitoring in agricultural areas nearby to urban and industrial emission sources in Córdoba province, Argentina, employing the bioindicator Tillandsia capillaris (2011) Ecol. Indic., 11, pp. 1673-1680
  • Bermudez, G.M.A., Jasan, R., Plá, R., Pignata, M.L., Heavy metals and trace elements in atmospheric fall-out: their relationship with topsoil and wheat element composition (2012) J. Hazard. Mater., pp. 447-456
  • Bermudez, G.M.A., Moreno, M., Invernizzi, R., Plá, R., Pignata, M.L., Heavy metal pollution in topsoils near a cement plant: the role of organic matter and distance to the source to predict total and HCl-extracted heavy metal concentrations (2010) Chemosphere, 78, pp. 375-381
  • Lerda, D.E., Prosperi, C.H., Water mutagenicity and toxicology in Río Tercero (Córdoba, Argentina) (1996) Water Res., 30, pp. 819-824
  • Magliola, L., Andrada, J., Magliola, X., Pessat, O., Fenoglio, M., Genotoxic assessment of Río Tercero river waters (Córdoba, Argentina) under the influence of an industrialized area (1997) Mutat. Res., 379. , S100-S100
  • Harguinteguy, C.A., Fernández-Cirelli, A., Pignata, M.L., Heavy metal accumulation in leaves of aquatic plant Stuckenia filiformis and its relationship with sediment and water in the Suquía river (Argentina) (2014) Microchem. J., 114, pp. 111-118
  • Monferrán, M.V., Galanti, L.N., Bonansea, R.I., Amé, M.V., Wunderlin, D.A., Integrated survey of water pollution in the Suquía River basin (Córdoba, Argentina) (2011) J. Environ. Monit., 13, p. 398
  • Franco-Uría, A., López-Mateo, C., Roca, E., Fernández-Marcos, M.L., Source identification of heavy metals in pastureland by multivariate analysis in NW Spain (2009) J. Hazard. Mater., 165, pp. 1008-1015
  • Nekrasova, G., Ushakova, O., Ermakov, A., Uimin, M., Byzov, I., Effects of copper(II) ions and copper oxide nanoparticles on Elodea densa Planch (2011) Russ. J. Ecol., 42, pp. 458-463
  • Argentina Legislation, Law 24051 (Ley Nacional 24051 de la República Argentina), , http://www2.medioambiente.gov.ar/mlegal/residuos/ley24051.htm, (acceded on 2015.03.29)
  • U.S. Environmental Protection Agency. Region 5, Resource Conservation and Recovery Act (RCRA). Ecological Screening Levels, , http://epa.gov/region05/waste/cars/pdfs/ecological-screening-levels-200308.pdf, (accessed on 2015.03.29)
  • U.S. Environmental Protection Agency. Ecological Screening Values for Surface Water, Sediment, and Soil. WSRC-TR-98- 00110, , http://www.osti.gov/bridge/purl.cover.jsp?purl=/47642uJvjR/webviewable/4764.PDF, (accessed on 2015.03.29)
  • U.S. Environmental Protection Agency. Water Quality Criteria. National Recommended Water Quality Criteria, , http://water.epa.gov/scitech/swgidance/standards/criteria/current/index.cfm#C, (accessed on 2015.03.29)
  • Wannaz, E.D., Carreras, H.A., Rodriguez, J.H., Pignata, M.L., Use of biomonitors for the identification of heavy metals emission sources (2012) Ecol. Indic., 20, pp. 163-169
  • Diagomanolin, V., Farhang, M., Ghazi-Khansari, M., Jafarzadeh, N., Heavy metals (Ni, Cr, Cu) in the Karoon waterway river, Iran (2004) Toxicol. Lett., 151, pp. 63-67
  • Cerdeira, A.L., Duke, S.O., The current status and environmental impacts of glyphosate-resistant crops (2006) J. Environ. Qual., 35, pp. 1633-1658
  • Jayaraju, N., Reddy, B.C.S.R., Reddy, K.R., Anthropogenic metal pollution in surface sediments of the Tambaraparni River Estuary (2011) Chem. Ecol., 27, pp. 337-350
  • Baldantoni, D., Maisto, G., Bartoli, G., Alfani, A., Analyses of three native aquatic plant species to assess spatial gradients of lake trace element contamination (2005) Aquat. Bot., 83, pp. 48-60
  • Duman, F., Obali, O., Demirezen, D., Seasonal changes of metal accumulation and distribution in shining pondweed (Potamogeton lucens) (2006) Chemosphere, 65, pp. 2145-2151
  • Grudnik, Z.M., Germ, M., Myriophyllum spicatum and Najas marina as bioindicators of trace element contamination in lakes (2010) J. Freshw. Ecol., 25, pp. 421-426
  • Demirezen, D., Aksoy, A., Common hydrophytes as bioindicators of iron and manganese pollutions (2006) Ecol. Indic., 6, pp. 388-393
  • Orchard, A., A revision of South American Myriophyllum (Haloragaceae) and its repercussions on some Australian and North American species (1981) Brunonia, 4, pp. 27-65
  • Kamal, M., Phytoaccumulation of heavy metals by aquatic plants (2004) Environ. Int., 29, pp. 1029-1039

Citas:

---------- APA ----------
Harguinteguy, C.A., Noelia Cofré, M., Fernández-Cirelli, A. & Luisa Pignata, M. (2016) . The macrophytes Potamogeton pusillus L. and Myriophyllum aquaticum (Vell.) Verdc. as potential bioindicators of a river contaminated by heavy metals. Microchemical Journal, 124, 228-234.
http://dx.doi.org/10.1016/j.microc.2015.08.014
---------- CHICAGO ----------
Harguinteguy, C.A., Noelia Cofré, M., Fernández-Cirelli, A., Luisa Pignata, M. "The macrophytes Potamogeton pusillus L. and Myriophyllum aquaticum (Vell.) Verdc. as potential bioindicators of a river contaminated by heavy metals" . Microchemical Journal 124 (2016) : 228-234.
http://dx.doi.org/10.1016/j.microc.2015.08.014
---------- MLA ----------
Harguinteguy, C.A., Noelia Cofré, M., Fernández-Cirelli, A., Luisa Pignata, M. "The macrophytes Potamogeton pusillus L. and Myriophyllum aquaticum (Vell.) Verdc. as potential bioindicators of a river contaminated by heavy metals" . Microchemical Journal, vol. 124, 2016, pp. 228-234.
http://dx.doi.org/10.1016/j.microc.2015.08.014
---------- VANCOUVER ----------
Harguinteguy, C.A., Noelia Cofré, M., Fernández-Cirelli, A., Luisa Pignata, M. The macrophytes Potamogeton pusillus L. and Myriophyllum aquaticum (Vell.) Verdc. as potential bioindicators of a river contaminated by heavy metals. Microchem. J. 2016;124:228-234.
http://dx.doi.org/10.1016/j.microc.2015.08.014