Artículo

Tesio, A.Y.; Granero, A.M.; Vettorazzi, N.R.; Ferreyra, N.F.; Rivas, G.A.; Fernández, H.; Zon, M.A. "Development of an electrochemical sensor for the determination of the flavonoid luteolin in peanut hull samples" (2014) Microchemical Journal. 115:100-105
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We describe the development of an electrochemical sensor based on glassy carbon electrodes modified with multiwalled carbon nanotubes dispersed in low molecular weight polyethylenimine for the determination of luteolin in peanut hulls. A well defined quasi-reversible surface redox couple was found using cyclic and square wave voltammetries for luteolin in 1.0molL-1 HClO4 aqueous solutions. The best accumulation potential and the accumulation time were 0.55V and 20min, respectively. An optimal ratio of 1:5 for multiwalled carbon nanotubes/polyethylenimine was used to prepare dispersions.The linear range was from 2.4×10-3 to 1.75μmolL-1. The luteolin contents determined in two peanut hull samples were (1.18±0.08) and (1.47±0.09) g per 100g of sample, being in very good agreement with those values obtained from the same samples using HPLC. The limits of detection and quantification were 5.0×10-10 and 1.5×10-9molL-1, respectively. The reproducibility and the repeatability were 8.0 and 7.3%, respectively. The modified glassy carbon electrode was stable even after 23days. © 2014 Elsevier B.V.

Registro:

Documento: Artículo
Título:Development of an electrochemical sensor for the determination of the flavonoid luteolin in peanut hull samples
Autor:Tesio, A.Y.; Granero, A.M.; Vettorazzi, N.R.; Ferreyra, N.F.; Rivas, G.A.; Fernández, H.; Zon, M.A.
Filiación:Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, Argentina
INFIQC, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
INQUIMAE (CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de enos Aires, Pabellón 2, Ciudad Universitaria, Buenos Aires, Argentina
Palabras clave:Flavonoid; Luteolin; Multiwalled carbon nanotubes; Polyethylenimine
Año:2014
Volumen:115
Página de inicio:100
Página de fin:105
DOI: http://dx.doi.org/10.1016/j.microc.2014.03.004
Título revista:Microchemical Journal
Título revista abreviado:Microchem. J.
ISSN:0026265X
CODEN:MICJA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0026265X_v115_n_p100_Tesio

Referencias:

  • (1996) Herbs, Spices and Medicinal Plants: Recent Advances in Botany, Horticulture and Pharmacology, 3. , The Howorth Press Inc., New York, L.E. Craker, J.E. Simon (Eds.)
  • Shimoi, K., Okada, H., Furugori, M., Goda, T., Takase, S., Suzuki, M., Hara, Y., Kinae, N., Intestinal absorption of luteolin and luteolin 7-O-β-glucoside in rats and humans (1998) FEBS Lett., 438, pp. 220-224
  • Middleton, E., Kandaswami, C., Effects of flavonoids on immune and inflammatory cell functions (1992) Biochem. Pharmacol., 43, pp. 1167-1179
  • Cooks, N.C., Samman, S., Flavonoids: chemistry, metabolism, cardioprotective effects, and dietary sources (1996) J. Nutr. Biochem., 7, pp. 66-76
  • Fernandez, M.T., Mira, M.L., Florêncio, M.H., Jennings, K.R., Iron and copper chelation by flavonoids: an electrospray mass spectrometry study (2002) J. Inorg. Biochem., 92, pp. 105-111
  • Park, Y.J., Kim, H.J., Lee, S.J., Choi, H.Y., Jin, C., Lee, Y.S., A new chromone, 11-hydroxy-sec-O-glucosylhamaudol from Ostericum koreanum (2007) Chem. Pharm. Bull., 55, pp. 1065-1066
  • Kazuki, K., Mari, U., Hiroaki, Y., Takashi, H., Bioavailable flavonoids to suppress the formation of 8-OHdG in HepG2 cells (2006) Arch. Biochem. Biophys., 455, pp. 197-203
  • Fecka, I., Cisowski, W., TLC determination of tannins and flavonoids in extracts from some Erodium species using chemically modified stationary phases (2002) J. Planar. Chromatogr., 15, pp. 429-432
  • Liu, C.S., Song, Y.S., Zhang, K.J., Ryu, J.C., Kim, M., Zhou, T.U., Gas chromatographic/mass spectrometric profiling of luteolin and its metabolites in rat urine and bile (1995) J. Pharm. Biomed. Anal., 13, pp. 1409-1414
  • Liu, F.F., Ang, C.Y.W., Heinze, T.M., Rankin, J.D., Beger, R.D., Freeman, J.P., Lay, I.O., Evaluation of major active components in St. John's wort dietary supplements by high pressure liquid chromatography with photodiode array detection and electrospray mass spectrometric confirmation (2000) J. Chromatogr. A, 888 (1-2), pp. 85-92
  • Areias, F.M., Valentao, P., Andrade, P.B., Ferreres, F., Seabra, R.M., Phenolic fingerprint of peppermint leaves (2001) Food Chem., 73, pp. 307-311
  • Ku, Y.R., Chen, C.Y., Ho, L.K., Lini, J.H., Chang, Y.S., Analysis of flavonoids in Vernonia paltula by high-performance liquid chromatography (2002) J. Food Drug Anal., 10, pp. 139-142
  • Wittemer, S.M., Veit, M., Validated method for the determination of six metabolites derived from artichoke leaf extract in human plasma by high performance liquid chromatography-colorimetric array detection (2003) J. Chromatogr. B, 793, pp. 367-375
  • Srinivasa, H., Bagul, M.S., Padh, H., Rajani, M., A rapid densitometric method for the quantification of luteolin in medicinal plants using HPTLC (2004) Chromatographia, 60, pp. 131-134
  • Jin, D.R., Hakamata, H., Takahashi, K., Kotani, A., Kusu, F., Separation of flavonoids by semi-micro high-performance liquid chromatography with electrochemical detection (2004) Bull. Chem. Soc. Jpn., 77, pp. 1147-1152
  • Qian, Z.M., Li, H.J., Li, P., Ren, M.T., Tang, D., Simultaneous qualitation and quantification of thirteen bioactive compounds in Flos lonicerae by high-performance liquid chromatography with diode array detector and mass spectrometry (2007) Chem. Pharm. Bull., 55, pp. 1073-1076
  • Zhou, Y.Z., Liu, X.X., Zheng, X.H., Zheng, J.B., Simultaneous determination of quercetin and luteolin in dried flowers by multivariate HPLC-ECD calibration (2007) Chromatographia, 66, pp. 635-637
  • Lü, Y.Q., Wu, C.H., Yuan, Z.B., Determination of apigenin and luteolin in Flos buddlejae by hydroxy propyl-β-cyclodextrin micellar electrokinetic capillary chromatography (2005) Chin. J. Anal. Chem., 6, pp. 805-807
  • Chu, Q.C., Wu, T., Fu, L., Ye, J.N., Simultaneous determination of active ingredients in Erigeron breviscapus (Vant.) Hand-Mazz. by capillary electrophoresis with electrochemical detection (2005) J. Pharm. Biomed. Anal., 37, pp. 535-541
  • Xu, X., Yu, L., Chen, G., Determination of flavonoids in Portulaca oleracea L. by capillary electrophoresis with electrochemical detection (2006) J. Pharm. Biomed. Anal., 41, pp. 493-499
  • Iijima, S., Helical microtubules of graphitic carbon (1991) Nature, 354, pp. 56-58
  • Rubianes, M.D., Rivas, G.A., Dispersion of multi-wall carbon nanotubes in polyethylenimine: a new alternative for preparing electrochemical sensors (2007) Electrochem. Commun., 9, pp. 480-484
  • Balasubramanian, K., Kurkina, T., Ahmad, A., Burghard, M., Kern, K., Tuning the functional interface of carbon nanotubes by electrochemistry: toward nanoscale chemical sensors and biosensors (2012) J. Mater. Res., 27, pp. 391-402
  • Rivas, G.A., Rubianes, M.D., Rodríguez, M.C., Ferreyra, N.F., Luque, G.L., Pedano, M.L., Miscoria, S.A., Parrado, C., Carbon nanotubes for electrochemical biosensing (2007) Talanta, 74, pp. 291-307
  • Pérez-López, B., Merkoci, A., Nanomaterials based on biosensors for food analysis applications (2011) Trends Food Sci. Technol., 22, pp. 625-639
  • Murugesan, S., Myers, K., Subramanian, V., Amino-functionalized and acid treated multi-walled carbon nanotubes as supports for electrochemical oxidation of formic acid (2011) Appl. Catal. B Environ., 103, pp. 266-274
  • Chen, J., Chen, Q., Ma, Q., Influence of surface functionalization via chemical oxidation on the properties of carbon nanotubes (2012) J. Colloid Interface Sci., 370, pp. 32-38
  • Trojanowicz, M., Mulchandani, A., Mascini, M., Carbon nanotubes-modified screen-printed electrodes for chemical sensors and biosensors (2004) Anal. Lett., 37, pp. 3185-3204
  • Forney, M.W., Poler, J.C., Significantly enhanced single-walled carbon nanotube dispersion stability in mixed solvent systems (2011) J. Phys. Chem. C, 115, pp. 10531-10536
  • Rivas, G.A., Miscoria, S.A., Desbrieres, J., Barrera, G.D., New biosensing platforms based on the layer-by-layer self-assembling of polyelectrolytes on Nafion/carbon nanotubes-coated glassy carbon electrodes (2007) Talanta, 71, pp. 270-275
  • Belashova, E.D., Melnik, N.A., Pismenskaya, N.D., Shevtsova, K.A., Nebavsky, A.V., Lebedev, K.A., Nikonenko, V.V., Overlimiting mass transfer through cation-exchange membranes modified by Nafion film and carbon nanotubes (2012) Electrochim. Acta, 59, pp. 412-423
  • Qian, L., Yang, X., Composite film of carbon nanotubes and chitosan for preparation of amperometric hydrogen peroxide biosensor (2006) Talanta, 68, pp. 721-727
  • Bollo, S., Ferreyra, N.F., Rivas, G.A., Electrooxidation of DNA at glassy carbon electrodes modified with multi-wall carbon nanotubes dispersed in chitosan (2007) Electroanalytical, 19, pp. 833-840
  • Zhao, T., Liu, L., Li, G., Dang, A., Li, T., Electrochemical determination of melamine with a glassy carbon electrode coated with a multi-wall carbon nanotube/chitosan composite (2012) J. Electrochem. Soc., 159, pp. K141-K145
  • Jyothirmayee Aravind, S.S., Ramaprabhu, S.G., Noble metal dispersed multiwalled carbon nanotubes immobilized ss-DNA for selective detection of dopamine (2011) Sens. Actuators B Chem., 155, pp. 679-686
  • Jalit, Y., Rodríguez, M.C., Rubianes, M.D., Bollo, S., Rivas, G.A., Glassy carbon electrodes modified with multiwall carbon nanotubes dispersed in polylysine (2008) Electroanalytical, 20, pp. 1623-1631
  • Dalmasso, P., Pedano, M.L., Rivas, G.A., Dispersion of multi-wall carbon nanotubes in polyhistidine: characterization and analytical applications (2012) Anal. Chim. Acta., 710, pp. 58-64
  • Luque, G.L., Ferreyra, N.F., Granero, A., Bollo, S., Rivas, G.A., Electrooxidation of DNA at glassy carbon electrodes modified with multiwall carbon nanotubes dispersed in polyethylenimine (2011) Electrochim. Acta, 56, pp. 9121-9126
  • Shieh, Y.-T., Yu, T.-Y., Wang, T.-L., Yang, C.H., Effects of pH on electrocatalytic activity of carbon nanotubes in polyethylenimine composites (2012) J. Electroanal. Chem., 664, pp. 139-145
  • Sánchez Arribas, A., Bermejo, E., Chicharro, M., Zapardiel, A., Luque, G.L., Ferreyra, N.F., Rivas, G.A., Analytical applications of glassy carbon electrodes modified with multi-wall carbon nanotubes dispersed in polyethylenimine as detectors in flow systems (2007) Anal. Chim. Acta., 596, pp. 183-194
  • Gutiérrez, F., Ortega, G., Cabrera, J.L., Rubianes, M.D., Rivas, G.A., Quantification of quercetin using glassy carbon electrodes modified with multiwalled carbon nanotubes dispersed in polyethylenimine and polyacrylic acid (2010) Electroanalytical, 22, pp. 2650-2657
  • Gutiérrez, G., Gutiérrez, A.S., García, G., Galicia, L., Rivas, G.A., Determination of 8-hydroxy-2'-deoxyguanosine using electrodes modified with a dispersion of carbon nanotubes in polyethylenimine (2011) Electroanalytical, 23, pp. 1221-1228
  • Pin-Der, D., Dong-Bor, Y., Gow-Chin, Y., Extraction and identification of an antioxidative component from peanut hulls (1992) JAOCS, 69, pp. 814-818
  • Osteryoung, J.G., O'Dea, J., (1987) Electroanalytical Chemistry, pp. 209-234. , Marcel Dekker, New York, A.J. Bard (Ed.)
  • McCreery, R.L., Carbon electrodes: structural effects on electron transfer kinetics (1991) Electroanalytical Chemistry, pp. 221-274. , Marcel Dekker, New York, A.J. Bard (Ed.)
  • Miller, J.C., Miller, J.N., (1993) Estadística para Química Analítica, , Addison-Wesley Iberoamericana, S.A., Wilmington, Delaware
  • Yen, G.C., Duh, P.D., Tsai, C.L., Relationship between antioxidant activity and maturity of peanut hulls (1993) J. Agric. Food Chem., 41, pp. 67-70
  • Zhao, D., Zhang, X., Feng, L., Qi, Q., Wang, S., Sensitive electrochemical determination of luteolin in peanut hulls using multi-walled carbon nanotubes modified electrode (2011) Food Chem., 127, pp. 694-698
  • Sheng, S., Zhang, L., Chen, G., Determination of 5,7-dihydrochromone and luteolin in peanut hulls by capillary electrophoresis with a multiwall carbon nanotube/poly(ethylene terephthalate) composite electrode (2014) Food Chem., 145, pp. 555-561
  • Pang, P., Liu, Y., Zhang, Y., Gao, Y., Hu, Q., Electrochemical determination of luteolin in peanut hulls using graphene and hydroxyapatite nanocomposite modified electrode (2014) Sens. Actuators B Chem., 194, pp. 397-403
  • Zeng, L., Zhang, Y., Wang, H., Guo, L., Electrochemical behavior of luteolin and its detection based on macroporous carbon modified glassy carbon electrode (2013) Anal. Methods, 5, pp. 3365-3370

Citas:

---------- APA ----------
Tesio, A.Y., Granero, A.M., Vettorazzi, N.R., Ferreyra, N.F., Rivas, G.A., Fernández, H. & Zon, M.A. (2014) . Development of an electrochemical sensor for the determination of the flavonoid luteolin in peanut hull samples. Microchemical Journal, 115, 100-105.
http://dx.doi.org/10.1016/j.microc.2014.03.004
---------- CHICAGO ----------
Tesio, A.Y., Granero, A.M., Vettorazzi, N.R., Ferreyra, N.F., Rivas, G.A., Fernández, H., et al. "Development of an electrochemical sensor for the determination of the flavonoid luteolin in peanut hull samples" . Microchemical Journal 115 (2014) : 100-105.
http://dx.doi.org/10.1016/j.microc.2014.03.004
---------- MLA ----------
Tesio, A.Y., Granero, A.M., Vettorazzi, N.R., Ferreyra, N.F., Rivas, G.A., Fernández, H., et al. "Development of an electrochemical sensor for the determination of the flavonoid luteolin in peanut hull samples" . Microchemical Journal, vol. 115, 2014, pp. 100-105.
http://dx.doi.org/10.1016/j.microc.2014.03.004
---------- VANCOUVER ----------
Tesio, A.Y., Granero, A.M., Vettorazzi, N.R., Ferreyra, N.F., Rivas, G.A., Fernández, H., et al. Development of an electrochemical sensor for the determination of the flavonoid luteolin in peanut hull samples. Microchem. J. 2014;115:100-105.
http://dx.doi.org/10.1016/j.microc.2014.03.004