Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We deal with the clustering problem in a metric graph. We look for two clusters, and to this end, we study the first nonzero eigenvalue of the p Laplacian on a quantum graph with Newmann or Kirchoff boundary conditions on the nodes. Then, an associated eigenfunction up provides two sets inside the graph, {up > 0} and {up < 0}, which define the clusters. Moreover, we describe in detail the limit cases p→∞and p→1+. © 2016 Project Euclid.

Registro:

Documento: Artículo
Título:Clustering for metric graphs using the p-Laplacian
Autor:Del Pezzo, L.M.; Rossi, J.D.
Filiación:CONICET, Departamento de Matemática, FCEyN, Universidad de Buenos Aires, Pabellon i, Ciudad Universitaria (1428), Buenos Aires, Argentina
Año:2016
Volumen:65
Número:3
Página de inicio:451
Página de fin:472
DOI: http://dx.doi.org/10.1307/mmj/1472066142
Título revista:Michigan Mathematical Journal
Título revista abreviado:Mich. Math. J.
ISSN:00262285
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00262285_v65_n3_p451_DelPezzo

Referencias:

  • Ambrosio, L., Fusco, N., Pallara, D., (2000) Functions of Bounded Variations and Free Discontinuity Problems, , Oxford University Press, London
  • Berkolaiko, G., Kuchment, P., Introduction to quantum graphs (2013) Math. Surveys Monogr, 186, pp. xiv and 270. , American Mathematical Society, Providence, RI
  • Birindelli, I., Demengel, F., First eigenvalue and maximum principle for fully nonlinear singular operators (2006) Adv. Differential Equations, 11 (1), pp. 91-119
  • Birindelli, I., Demengel, F., Eigenvalue, maximum principle and regularity for fully non linear homogeneous operators (2007) Commun. Pure Appl. Anal, 6 (2), pp. 335-366
  • Bondarenko, A.N., Dedok, V.A., Spectral surgery for the Schrödinger operator on graphs (2012) Dokl. Math, 85 (3), pp. 367-368
  • Brezis, H., (2011) Functional Analysis, Sobolev Spaces and Partial Differential Equations, , Universitext, xiv + 599 pp., Springer, New York
  • Caselles, V., Chambolle, A., Novaga, M., Some remarks on uniqueness and regularity of Cheeger sets (2010) Rend. Semin. Mat. Univ. Padova, 123, pp. 191-201
  • Del Pezzo, L.M., Rossi, J.D., The first eigenvalue of the p-Laplacian on quantum graphs Anal. Math.Phys, , http://cms.dm.uba.ar/Members/ldpezzo/QG.pdf_, preprint, (to appear)
  • Evans, L., Gariepy, R., Measure theory and fine properties of functions (1992) Stud. Adv. Math, pp. viii and 268. , CRC Press, Boca Raton, FL
  • Figalli, A., Maggi, F., Pratelli, A., A note on Cheeger sets (2009) Proc. Amer. Math. Soc, 137, pp. 2057-2062
  • Friedlander, L., Genericity of simple eigenvalues for a metric graph (2005) Israel J. Math, 146, pp. 149-156
  • Garcia-Azorero, J., Peral, I., Existence and non-uniqueness for the p-Laplacian: Nonlinear eigenvalues (1987) Comm. Partial Differential Equations, 12, pp. 1389-1430
  • Juutinen, P., Principal eigenvalue of a very badly degenerate operator and applications (2007) J. Differential Equations, 236, pp. 532-550
  • Juutinen, P., Lindqvist, P., Manfredi, J.J., The ∞-eigenvalue problem (1999) Arch. Ration. Mech. Anal, 148, pp. 89-105
  • Kostrykin, V., Schrader, R., Kirchhoff's rule for quantum wires (1999) J. Phys. A, 32 (4), pp. 595-630
  • Kuchment, P., Quantum graphs: I. Some basic structures (2004) Waves Random Media, 14, pp. S107-S128
  • Kurasov, P., On the spectral gap for Laplacians on metric graphs (2013) Acta Phys. Polon. A, 124, pp. 1060-1062
  • Kurasov, P., Malenova, G., Naboko, S., Spectral gap for quantum graphs and their edge connectivity (2013) J. Phys. A, 46, pp. 275-309
  • Kurasov, P., Naboko, S., On Rayleigh Theorem for Quantum Graphs, , InstitutMittag-Leffler Report No. 4, 2012/2013
  • Kurasov, P., Naboko, S., Rayleigh estimates for differential operators on graphs (2014) J. Spectr. Theory, 4 (2), pp. 211-219
  • Lang, J., Edmunds, D., Eigenvalues, embeddings and generalised trigonometric functions (2016) Lecture Notes in Math, pp. xii and 220. , Springer, Heidelberg, 2011
  • Lindqvist, P., Note on a nonlinear eigenvalue problem (1993) Rocky Mountain J. Math, 23, pp. 281-288
  • Lindqvist, P., Some remarkable sine and cosine functions (1995) Ric. Mat, 44, pp. 269-290
  • Lindqvist, P., Peetre, J., Two remarkable identities, called Twos, for inverses to some Abelian integrals (2001) Amer. Math. Monthly, 108, pp. 403-410
  • Parini, E., An introduction to the Cheeger problem (2011) Surv.Math. Appl, 6, pp. 9-22
  • Post, O., Spectral analysis on graph-like spaces (2012) Lecture Notes in Math
  • Rossi, J.D., Saintier, N., On the first nontrivial eigenvalue of the ∞-Laplacian with Neumann boundary conditions (2016) Houston J. Math, 42, pp. 613-635

Citas:

---------- APA ----------
Del Pezzo, L.M. & Rossi, J.D. (2016) . Clustering for metric graphs using the p-Laplacian. Michigan Mathematical Journal, 65(3), 451-472.
http://dx.doi.org/10.1307/mmj/1472066142
---------- CHICAGO ----------
Del Pezzo, L.M., Rossi, J.D. "Clustering for metric graphs using the p-Laplacian" . Michigan Mathematical Journal 65, no. 3 (2016) : 451-472.
http://dx.doi.org/10.1307/mmj/1472066142
---------- MLA ----------
Del Pezzo, L.M., Rossi, J.D. "Clustering for metric graphs using the p-Laplacian" . Michigan Mathematical Journal, vol. 65, no. 3, 2016, pp. 451-472.
http://dx.doi.org/10.1307/mmj/1472066142
---------- VANCOUVER ----------
Del Pezzo, L.M., Rossi, J.D. Clustering for metric graphs using the p-Laplacian. Mich. Math. J. 2016;65(3):451-472.
http://dx.doi.org/10.1307/mmj/1472066142