Artículo

Dalotto-Moreno, T.; Blidner, A.G.; Girotti, M.R.; Maller, S.M.; Rabinovich, G.A. "Immunotherapy in cancer. Current prospects, challenges and new horizons. " (2018) Medicina (Argentina). 78(5):336-348
Estamos trabajando para incorporar este artículo al repositorio
Consulte la política de Acceso Abierto del editor

Abstract:

under-Recent under-standing standing of the mechanisms that control immune system homeostasis and orchestrate antitumor responses has prompted the development of novel immunotherapeutic modalities. These include antibodies that target immune checkpoints such as PD-1/PD-L1 and CTLA-4, agonistic antibodies of costimulatory molecules such as CD137 and OX-40 and the adoptive transfer of genetically-modified antitumor T cells. However, a large number of patients do not respond to these therapies and develop resistance as a result of activation of compensatory circuits. Rational combination of immunotherapeutic modalities will help overcome resistance and will increase the number of patients who will benefit from these treatments. Moreover, identification of predictive biomarkers will allow selection of patients responding to these treatments. Emerging clinical trials and pre-clinical studies have shown exciting results anticipating new horizons in the design and implementation of cancer immunotherapeutic modalities. © 2018, Instituto de Investigaciones Medicas. All rights reserved.

Registro:

Documento: Artículo
Título:Immunotherapy in cancer. Current prospects, challenges and new horizons.
Autor:Dalotto-Moreno, T.; Blidner, A.G.; Girotti, M.R.; Maller, S.M.; Rabinovich, G.A.
Filiación:Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
Laboratorio de Inmuno-Oncología Translacional, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:Biomarkers; Cancer; Chimeric antigen receptors; Co-stimulation; Immunological checkpoints; Immunotherapy; biological marker; cytotoxic T lymphocyte antigen 4 antibody; OX40 ligand; programmed death 1 ligand 1; tumor necrosis factor receptor superfamily member 9; adoptive transfer; antineoplastic activity; Article; cancer immunotherapy; DNA modification; human; prediction; T lymphocyte
Año:2018
Volumen:78
Número:5
Página de inicio:336
Página de fin:348
Título revista:Medicina (Argentina)
Título revista abreviado:Medicina
ISSN:00257680
CODEN:MEDCA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00257680_v78_n5_p336_DalottoMoreno

Referencias:

  • Coley, W.B., The treatment of inoperable sarcoma by bacterial toxins (The mixed toxins of the Streptococcus ery-sipelas and the Bacillus prodigiosus) (1910) Proc R Soc Med, 3, pp. 1-48
  • Bayry, J., Autoimmunity: CTLA-4: A key protein in autoimmunity (2009) Nat Rev Rheumatol, 5, pp. 244-245
  • Wherry, E.J., Kurachi, M., Molecular and cellular insights into T cell exhaustion (2015) Nat Rev Immunol, 15, pp. 486-499
  • Sakuishi, K., Apetoh, L., Sullivan, J.M., Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity (2010) J Exp Med, 207, pp. 2187-2194
  • Goldberg, M.V., Drake, C.G., LAG-3 in cancer immunotherapy (2011) Curr Top Microbiol Immunol, 344, pp. 269-278
  • Manieri, N.A., Chiang, E.Y., Grogan, J.L., TIGIT: A key inhibitor of the cancer immunity c (2017) Trends Immunol, 38, pp. 20-28
  • Antonioli, L., Pacher, P., Vizi, E.S., CD39 and CD73 in immunity and inflammation (2013) Trends Mol Med, 19, pp. 355-367
  • Lines, J.L., Pantazi, E., Mak, J., VISTA is an immune checkpoint molecule for human T cells (2014) Cancer Res, 74, pp. 1924-1932
  • Moon, Y.W., Hajjar, J., Hwu, P., Targeting the indole-amine 2,3-dioxygenase pathway in cancer (2015) J Immunother Cancer, 3, p. 51
  • Long, G.V., Dummer, R., Hamid, O., Epacadostat (E) plus pembrolizumab (P) versus pembrolizumab alone in patients (pts) with unresectable or metastatic melanoma: Results of the phase 3 ECHO-301/KEYNOTE-252 study (2018) Australia: ASCO
  • Rabinovich, G.A., Croci, D.O., Regulatory circuits mediated by lectin-glycan interactions in autoimmunity and cancer (2012) Immunity, 36, pp. 322-335
  • Rubinstein, N., Alvarez, M., Zwirner, N.W., Targeted inhibition of galectin-1 gene expression in tumor cells results in heightened T cell-mediated rejection: A potential mechanism of tumor-immune privilege (2004) Cancer Cell, 5, pp. 241-251
  • Juszczynski, P., Ouyang, J., Monti, S., The AP1-depen-dent secretion of galectin-1 by Reed–Sternberg cells fosters immune privilege in classical Hodgkin lymphoma (2007) Proc Nat Acad Sci USA, 104, pp. 13134-13139
  • Soldati, R., Berger, E., Zenclussen, A.C., Neuroblastoma triggers an immunoevasive program involving galectin-1-dependent modulation of T cell and dendritic cell compartments (2012) Int J Cancer, 131, pp. 1131-1141
  • Dalotto-Moreno, T., Croci, D.O., Cerliani, J.P., Targeting galectin-1 overcomes breast cancer-associated immu-nosuppression and prevents metastatic disease (2013) Cancer Res, 73, pp. 1107-1117
  • Banh, A., Zhang, J., Cao, H., Tumor galectin-1 mediates tumor growth and metastasis through regulation of T-cell apoptosis (2011) Cancer Res, 71, pp. 4423-4431
  • Martínez-Bosch, N., Fernández-Barrena, M.G., Moreno, M., Galectin-1 drives pancreatic carcinogenesis through stroma remodeling and Hedgehog signaling activation (2014) Cancer Res, 74, pp. 3512-3524
  • Coley, W.B., The treatment of inoperable sarcoma by bacterial toxins (The mixed toxins of the Streptococcus ery-sipelas and the Bacillus prodigiosus) (1910) Proc R Soc Med, 3, pp. 1-48
  • Rabinovich, G.A., Conejo-Garcia, J.R., Shaping the immune landscape in cancer by galectin-driven regulatory pathways (2016) J Mol Biol, 428, pp. 3266-3281
  • Toscano, M.A., Bianco, G.A., Ilarregui, J.M., Differential glycosylation of TH1, TH2 and TH-17 effector cells selectively regulates susceptibility to cell death (2007) Nat Immunol, 8, pp. 825-834
  • Mendez-Huergo, S.P., Blidner, A.G., Rabinovich, G.A., Galectins: Emerging regulatory checkpoints linking tumor immunity and angiogenesis (2017) Curr Opin Immunol, 45, pp. 8-15
  • Ilarregui, J.M., Croci, D.O., Bianco, G.A., Tolerogenic signals delivered by dendritic cells to T cells through a galectin-1-driven immunoregulatory circuit involving interleukin 27 and interleukin 10 (2009) Nat Immunol, 10, pp. 981-991
  • Croci, D.O., Salatino, M., Rubinstein, N., Disrupting galectin-1 interactions with N-glycans suppresses hypoxia-driven angiogenesis and tumorigenesis in Kaposi’s sarcoma (2012) J Exp Med, 209, pp. 1985-2000
  • Croci, D.O., Cerliani, J.P., Dalotto-Moreno, T., Glycosyl-ation-dependent lectin-receptor interactions preserve angiogenesis in anti-VEGF refractory tumors (2014) Cell, 156, pp. 744-758
  • Nishino, M., Ramaiya, N.H., Hatabu, H., Monitoring immune-checkpoint blockade: Response evaluation and bio-marker development (2017) Nat Rev Clin Oncol, 14, pp. 655-668
  • Schumacher, T.N., Schreiber, R.D., Neoantigens in cancer immunotherapy (2015) Science, 348, pp. 69-74
  • Peggs, K.S., Quezada, S.A., Allison, J.P., Cancer immunotherapy: Co-stimulatory agonists and co-inhibitory antagonists (2009) Clin Exp Immunol, 157, pp. 9-19
  • Imai, C., Mihara, K., Andreansky, M., Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia (2004) Leukemia, 18, pp. 676-684
  • Sanmamed, M.F., Pastor, F., Rodriguez, A., Agonists of Co-stimulation in Cancer Immunotherapy Directed Against CD137, OX40, GITR, CD27, CD28, and ICOS (2015) Sem Oncol, 42, pp. 640-655
  • Linch, S.N., McNamara, M.J., Redmond, W.L., OX40 Agonists and combination immunotherapy: Putting the pedal to the metal (2015) Front Oncol, 5, p. 34
  • Fan, X., Quezada, S.A., Sepulveda, M.A., Engagement of the ICOS pathway markedly enhances efficacy of CTLA-4 blockade in cancer immunotherapy (2014) J Exp Med, 211, pp. 715-725
  • Amatore, F., Gorvel, L., Olive, D., Inducible Co-Stimulator (ICOS) as a potential therapeutic target for anti-cancer therapy (2018) Expert Opin Ther Targets, 22, pp. 343-351
  • Knee, D.A., Hewes, B., Brogdon, J.L., Rationale for anti-GITR cancer immunotherapy (2016) Eur J Cancer, 67, pp. 1-10
  • Weigelin, B., Bolaños, E., Teijeira, A., Focusing and sustaining the antitumor CTL effector killer response by agonist anti-CD137 mAb (2015) Proc Natl Acad Sci USA, 112, pp. 7551-7556
  • Mitchinson, N.A., Dube, O.L., Studies on the immunological response to foreign tumor transplants in the mouse (1955) J Exp Med, 102, pp. 157-177
  • Morgan, D.A., Ruscetti, F.W., Gallo, R., Selective in vitro growth of T lymphocytes from normal human bone marrows (1976) Science, 193, pp. 1007-1008
  • Rosenberg, S.A., Spiess, P., Lafreniere, R., A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes (1986) Science, 233, pp. 1318-1321
  • Rosenberg, S.A., Packard, B.S., Aebersold, P.M., Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report (1988) N Engl J Med, 319, pp. 1676-1680
  • Dudley, M.E., Wunderlich, J.R., Robbins, P.F., Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes (2002) Science, 298, pp. 850-854
  • Rosenberg, S.A., Yang, J.C., Sherry, R.M., Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy (2011) Clin Cancer Res, 17, pp. 4550-4557
  • Besser, M.J., Shapira-Frommer, R., Itzhaki, O., Adoptive transfer of tumor-infiltrating lymphocytes in patients with metastatic melanoma: Intent-to-treat analysis and efficacy after failure to prior immunotherapies (2013) Clin Cancer Res, 19, pp. 4792-4800
  • Klaver, Y., Kunert, A., Sleijfer, S., Adoptive T-cell therapy: A need for standard immune monitoring (2015) Immunotherapy, 7, pp. 513-533
  • Robbins, P.F., Morgan, R.A., Feldman, S.A., Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1 (2011) J Clin Oncol, 29, pp. 917-924
  • Coley, W.B., The treatment of inoperable sarcoma by bacterial toxins (The mixed toxins of the Streptococcus ery-sipelas and the Bacillus prodigiosus) (1910) Proc R Soc Med, 3, pp. 1-48
  • Kawakami, Y., Eliyahu, S., Delgado, C.H., Identification of a human melanoma antigen recognized by tumor-infiltrating lymphocytes associated with in vivo tumor rejection (1994) Proc Natl Acad Sci USA, 91, pp. 6458-6462
  • Kawakami, Y., Eliyahu, S., Delgado, C.H., Cloning of the gene coding for a shared human melanoma antigen recognized by autologous T cells infiltrating into tumor (1994) Proc Natl Acad Sci USA, 91, pp. 3515-3519
  • Imai, C., Mihara, K., Andreansky, M., Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia (2004) Leukemia, 18, pp. 676-684
  • Song, D.G., Ye, Q., Carpenito, C., In vivo persistence, tumor localization, and antitumor activity of CAR-engi-neered T cells is enhanced by costimulatory signaling through CD137 (4-1BB) (2011) Cancer Res, 71, pp. 4617-4627
  • Rosenberg, S.A., Restifo, N.P., Adoptive cell transfer as personalized immunotherapy for human cancer (2015) Science, 348, pp. 62-68
  • Kochenderfer, J.N., Dudley, M.E., Feldman, S.A., B-cell depletion and remissions of malignancy along with cy-tokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells (2012) Blood, 119, pp. 2709-2720
  • Grupp, S.A., Kalos, M., Barrett, D., Chimeric antigen receptor-modified T cells for acute lymphoid leukemia (2013) N Engl J Med, 368, pp. 1509-1518
  • Kakarla, S., Gottschalk, S., CAR T cells for solid tumors: Armed and ready to go? (2014) Cancer J, (2), pp. 151-155
  • Kalaitsidou, M., Kueberuwa, G., Schütt, A., CAR T-cell therapy: Toxicity and the relevance of preclinical models (2015) Immunotherapy, 7, pp. 487-497
  • Kalos, M., June, C.H., Adoptive T cell transfer for cancer immunotherapy in the era of synthetic biology (2013) Immunity, 39, pp. 49-60
  • Bonifant, C.L., Jackson, H.J., Brentjens, R.J., Toxicity and management in CAR T-cell therapy (2016) Mol Ther Oncolytics, 3, p. 16011
  • Roybal, K.T., Rupp, L.J., Morsut, L., Precision tumor recognition by T cells with combinatorial antigen-sensing circuits (2016) Cell, 164, pp. 770-779
  • Zhang, H., Chua, K.S., Guimond, M., Lymphopenia and interleukin-2 therapy alter homeostasis of CD4+CD25+ regulatory T cells (2005) Nat Med, 11, pp. 1238-1243
  • Ku, C.C., Murakami, M., Sakamoto, A., Control of homeostasis of CD8+ memory T cells by opposing cytokines (2000) Science, 288, pp. 675-678
  • Berger, C., Berger, M., Hackman, R.C., Safety and immunologic effects of IL-15 administration in nonhuman primates (2009) Blood, 114, pp. 2417-2426
  • Wang, X., Popplewell, L.L., Wagner, J.R., Phase 1 studies of central memory-derived CD19 CAR T-cell therapy following autologous HSCT in patients with B-cell NHL (2016) Blood, 127, pp. 2980-2990
  • Liu, X., Ranganathan, R., Jiang, S., A chimeric switch-receptor targeting PD1 augments the efficacy of second generation CAR T-Cells in advanced solid tumors (2016) Cancer Res, 76, pp. 1578-1590
  • Chmielewski, M., Kopecky, C., Hombach, A.A., IL-12 release by engineered T cells expressing chimeric antigen receptors can effectively muster an antigen-independent macrophage response on tumor cells that have shut down tumor antigen expression (2011) Cancer Res, 71, pp. 5697-5706
  • Swart, M., Verbrugge, I., Beltman, J., Combination approaches with immune-checkpoint blockade in cancer therapy (2016) Front Oncol, 6, p. 223
  • John, L.B., Devaud, C., Duong, C.P., Anti-PD-1 antibody therapy potently enhances the eradication of established tumors by gene-modified T cells (2013) Clin Cancer Res, 19, pp. 5636-5646
  • Sunblad, V., Morosi, L.G., Geffner, J.R., Galectin-1: A jack-of-all-trades in the resolution of acute and chronic inflammation (2017) J Immunol, 199, pp. 3721-3730
  • Chen, D.S., Mellman, I., Oncology meets immunology: The cancer-immunity cycle (2013) Immunity, 39, pp. 1-10

Citas:

---------- APA ----------
Dalotto-Moreno, T., Blidner, A.G., Girotti, M.R., Maller, S.M. & Rabinovich, G.A. (2018) . Immunotherapy in cancer. Current prospects, challenges and new horizons. . Medicina (Argentina), 78(5), 336-348.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00257680_v78_n5_p336_DalottoMoreno [ ]
---------- CHICAGO ----------
Dalotto-Moreno, T., Blidner, A.G., Girotti, M.R., Maller, S.M., Rabinovich, G.A. "Immunotherapy in cancer. Current prospects, challenges and new horizons. " . Medicina (Argentina) 78, no. 5 (2018) : 336-348.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00257680_v78_n5_p336_DalottoMoreno [ ]
---------- MLA ----------
Dalotto-Moreno, T., Blidner, A.G., Girotti, M.R., Maller, S.M., Rabinovich, G.A. "Immunotherapy in cancer. Current prospects, challenges and new horizons. " . Medicina (Argentina), vol. 78, no. 5, 2018, pp. 336-348.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00257680_v78_n5_p336_DalottoMoreno [ ]
---------- VANCOUVER ----------
Dalotto-Moreno, T., Blidner, A.G., Girotti, M.R., Maller, S.M., Rabinovich, G.A. Immunotherapy in cancer. Current prospects, challenges and new horizons. . Medicina. 2018;78(5):336-348.
Available from: https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00257680_v78_n5_p336_DalottoMoreno [ ]