Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We establish a sharp affineLp Sobolev trace inequality by using the Lp Busemann–Petty centroid inequality. For p= 2 , our affine version is stronger than the famous sharp L2 Sobolev trace inequality proved independently by Escobar and Beckner. Our approach allows also to characterize all extremizers in this case. For this new inequality, no Euclidean geometric structure is needed. © 2017, Springer-Verlag Berlin Heidelberg.

Registro:

Documento: Artículo
Título:The sharp affine L2 Sobolev trace inequality and variants
Autor:de Nápoli, P.L.; Haddad, J.; Jiménez, C.H.; Montenegro, M.
Filiación:IMAS (UBA-CONICET) and Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, 1428, Argentina
Departamento de Matemática, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, 30.123-970, Brazil
Departamento de Matemática, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marquês de São Vicente, 225 - Edifício Cardeal Leme, Gávea, Rio de Janeiro, 22.451-900, Brazil
Palabras clave:51M16; Primary 46E35; Secondary 46E39
Año:2018
Volumen:370
Número:1-2
Página de inicio:287
Página de fin:308
DOI: http://dx.doi.org/10.1007/s00208-017-1548-9
Título revista:Mathematische Annalen
Título revista abreviado:Math. Ann.
ISSN:00255831
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00255831_v370_n1-2_p287_deNapoli

Referencias:

  • Aubin, T., Problèmes isopérimétriques et espaces de Sobolev (1976) J. Differ. Geom., 11, pp. 573-598
  • Beckner, W., Sharp Sobolev inequalities on the sphere and the Moser–Trudinger inequality (1993) Ann. Math., 138, pp. 213-242
  • Brendle, S., Chen, S.S., An existence theorem for the Yamabe problem on manifolds with boundary (2014) J. Eur. Math. Soc. (JEMS), 16, pp. 991-1016
  • Cabré, X., Tan, J., Positive solutions of nonlinear problems involving the square root of the Laplacian (2010) Adv. Math., 224, pp. 2052-2093
  • Caffarelli, L., Roquejoffre, J.M., Sire, Y., Variational problems in free boundaries for the fractional Laplacian (2010) J. Eur. Math. Soc., 12, pp. 1151-1179
  • Caffarelli, L., Silvestre, L., An extension problem related to the fractional Laplacian (2007) Commun. Partial Differ. Equ., 32, pp. 1245-1260
  • Capella, A., Dávila, J., Dupaigne, L., Sire, Y., Regularity of radial extremal solutions for some non-local semilinear equations (2011) Commun. Partial Differ. Equ., 36, pp. 1353-1384
  • Campi, S., Gronchi, P., The Lp-Busemann–Petty centroid inequality (2002) Adv. Math., 167, pp. 128-141
  • Cianchi, A., A sharp trace inequality for functions of bounded variation in the ball (2012) Proc. R. Soc. Edinb. Sect. A Math., 142, pp. 1179-1191
  • Cianchi, A., Lutwak, E., Yang, D., Zhang, G., Affine Moser–Trudinger and Morrey–Sobolev inequalities (2009) Calc. Var. Partial Differ. Equ., 36, pp. 419-436
  • Cianchi, A., Ferone, V., Nitsch, C., Trombetti, C., Balls minimize trace constants in BV (2014) Journal für die reine und angewandte Mathematik
  • Cordero-Erausquin, D., Nazaret, B., Villani, C., A mass-transportation approach to sharp Sobolev and Gagliardo–Nirenberg inequalities (2004) Adv. Math., 182 (2), pp. 307-332
  • Escobar, J.F., Sharp constant in a Sobolev trace inequality (1988) Indiana Univ. Math. J., 37, pp. 687-698
  • Escobar, J.F., Conformal deformation of a Riemannian metric to a scalar flat metric with constant mean curvature on the boundary (1992) Ann. Math., 136, pp. 1-50
  • Escobar, J.F., The Yamabe problem on manifolds with boundary (1992) J. Differ. Geom., 35, pp. 21-84
  • Federer, H., Fleming, W.H., Normal and integral currents (1960) Ann. Math., 72, pp. 458-520
  • Fernández Bonder, J., Saintier, N., Estimates for the Sobolev trace constant with critical exponent and applications (2008) Ann. Math. Pura Appl. (4), 187 (4), pp. 683-704
  • Fleming, W.H., Rishel, R., An integral formula for total gradient variation (1960) Arch. Math., 11, pp. 218-222
  • Haberl, C., Schuster, F.E., Asymmetric affine Lp Sobolev inequalities (2009) J. Funct. Anal., 257, pp. 641-658
  • Haberl, C., Schuster, F.E., General Lp affine isoperimetric inequalities (2009) J. Differ. Geom., 83, pp. 1-26
  • Haberl, C., Schuster, F.E., Xiao, J., An asymmetric affine Polya–Szego principle (2012) Math. Ann., 352, pp. 517-542
  • Haddad, J., Jiménez, C.H., Montenegro, M., Sharp affine Sobolev type inequalities via the Lp Busemann-Petty centroid inequality (2016) J. Funct. Anal., 271, pp. 454-473
  • Han, Z.-C., Li, Y.Y., The Yamabe problem on manifolds with boundary: existence and compactness results (1999) Duke Math. J., 99, pp. 489-542
  • Lions, P.L., The concentration-compactness principle in the calculus of variations. The locally compact case II (1985) Rev. Math. Iberoam., 1 (2), pp. 45-121
  • Ludwig, M., Xiao, J., Zhang, G., Sharp convex Lorentz–Sobolev inequalities (2011) Mathematische Ann., 350, pp. 169-197
  • Lutwak, E., On some affine isoperimetric inequalities (1986) J. Differ. Geom., 23, pp. 1-13
  • Lutwak, E., Yang, D., Zhang, G., Lp affine isoperimetric inequalities (2000) J. Differ. Geom., 56, pp. 111-132
  • Lutwak, E., Yang, D., Zhang, G., Sharp affine Lp Sobolev Inequalities (2002) J. Differ. Geom., 62, pp. 17-38
  • Lutwak, E., Yang, D., Zhang, G., On the Lp -Minkowski problem (2004) Trans. Am. Math. Soc., 356, pp. 4359-4370
  • Lutwak, E., Yang, D., Zhang, G., Optimal Sobolev norms and the Lp Minkowski problem (2006) Int. Math. Res. Not., 1, pp. 1-21
  • Lutwak, E., Zhang, G., Blaschke–Santaló inequalities (1997) J. Differ. Geom., 47, pp. 1-16
  • Marques, F.C., Existence results for the Yamabe problem on manifolds with boundary (2005) Indiana Univ. Math. J., 54, pp. 1599-1620
  • Maz’ja, V.G., Classes of domains and imbedding theorems for function spaces (1960) Sov. Math. Dokl., 1, pp. 882-885
  • Nazaret, B., Best constant in Sobolev trace inequalities on the half-space (2006) Nonlinear Anal. TMA, 65, pp. 1977-1985
  • Petty, C.M., Centroid surfaces (1961) Pac. J. Math., 11, pp. 1535-1547
  • Schneider, R., (2013) Convex Bodies: The Brunn-Minkowski Theory, , 2, Cambridge University Press, Cambridge
  • Silvestre, L., Regularity of the obstacle problem for a fractional power of the Laplace operator (2007) Commun. Pure Appl. Math., 60, pp. 67-112
  • Wang, T., The affine Sobolev–Zhang inequality on BV(Rn) (2012) Adv. Math., 230, pp. 2457-2473
  • Wang, T., The affine Pólya–Szegö principle: equality cases and stability (2013) J. Funct. Anal., 265, pp. 1728-1748
  • Talenti, G., Best constant in Sobolev inequality (1976) Ann. Math. Pura Appl. (iv), 110, pp. 353-372
  • Zhang, G., The affine Sobolev inequality (1999) J. Differ. Geom., 53, pp. 183-202

Citas:

---------- APA ----------
de Nápoli, P.L., Haddad, J., Jiménez, C.H. & Montenegro, M. (2018) . The sharp affine L2 Sobolev trace inequality and variants. Mathematische Annalen, 370(1-2), 287-308.
http://dx.doi.org/10.1007/s00208-017-1548-9
---------- CHICAGO ----------
de Nápoli, P.L., Haddad, J., Jiménez, C.H., Montenegro, M. "The sharp affine L2 Sobolev trace inequality and variants" . Mathematische Annalen 370, no. 1-2 (2018) : 287-308.
http://dx.doi.org/10.1007/s00208-017-1548-9
---------- MLA ----------
de Nápoli, P.L., Haddad, J., Jiménez, C.H., Montenegro, M. "The sharp affine L2 Sobolev trace inequality and variants" . Mathematische Annalen, vol. 370, no. 1-2, 2018, pp. 287-308.
http://dx.doi.org/10.1007/s00208-017-1548-9
---------- VANCOUVER ----------
de Nápoli, P.L., Haddad, J., Jiménez, C.H., Montenegro, M. The sharp affine L2 Sobolev trace inequality and variants. Math. Ann. 2018;370(1-2):287-308.
http://dx.doi.org/10.1007/s00208-017-1548-9