Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

This paper presents regularity results and associated high order numerical methods for one-dimensional fractional-Laplacian boundary-value problems. On the basis of a factorization of solutions as a product of a certain edge-singular weight ω times a "regular" unknown, a characterization of the regularity of solutions is obtained in terms of the smoothness of the corresponding right-hand sides. In particular, for right-hand sides which are analytic in a Bernstein ellipse, analyticity in the same Bernstein ellipse is obtained for the "regular" unknown. Moreover, a sharp Sobolev regularity result is presented which completely characterizes the co-domain of the fractional-Laplacian operator in terms of certain weighted Sobolev spaces introduced in (Babuška and Guo, SIAM J. Numer. Anal. 2002). The present theoretical treatment relies on a full eigendecomposition for a certain weighted integral operator in terms of the Gegenbauer polynomial basis. The proposed Gegenbauer-based Nyström numerical method for the fractional-Laplacian Dirichlet problem, further, is significantly more accurate and efficient than other algorithms considered previously. The sharp error estimates presented in this paper indicate that the proposed algorithm is spectrally accurate, with convergence rates that only depend on the smoothness of the right-hand side. In particular, convergence is exponentially fast (resp. faster than any power of the mesh-size) for analytic (resp. infinitely smooth) right-hand sides. The properties of the algorithm are illustrated with a variety of numerical results. © 2017 American Mathematical Society.

Registro:

Documento: Artículo
Título:Regularity theory and high order numerical methods for the (1D)-fractional Laplacian
Autor:Acosta, G.; Borthagaray, J.P.; Bruno, O.; Maas, M.
Filiación:IAFE - CONICET, Departamento de Matemática, FCEyN - Universidad de Buenos Aires, Ciudad Universitaria, Pabellón I (1428), Buenos Aires, Argentina
California Institute of Technology, Pasadena, CA, United States
Palabras clave:Fractional Laplacian; Gegenbauer polynomials; High order numerical methods; Hypersingular integral equations
Año:2018
Volumen:87
Número:312
Página de inicio:1821
Página de fin:1857
DOI: http://dx.doi.org/10.1090/mcom/3276
Título revista:Mathematics of Computation
Título revista abreviado:Math. Comput.
ISSN:00255718
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00255718_v87_n312_p1821_Acosta

Referencias:

  • Abatangelo, N., Large S-harmonic functions and boundary blow-up solutions for the fractional Laplacian (2015) Discrete Contin. Dyn. Syst, 35 (12), pp. 5555-5607. , MR3393247
  • Abramowitz, M., Stegun, I.A., (1965) Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables, Third printing, with corrections. National Bureau of Standards Applied Mathematics Series, 55. , Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., MR0177136
  • Acosta, G., Borthagaray, J.P., A fractional Laplace equation: Regularity of solutions and finite element approximations (2017) SIAM J. Numer. Anal, 55 (2), pp. 472-495. , MR3620141
  • Albanese, G., Fiscella, A., Valdinoci, E., Gevrey regularity for integro-differential operators (2015) J. Math. Anal. Appl, 428 (2), pp. 1225-1238. , MR3334976
  • Babuška, I., Guo, B., Direct and inverse approximation theorems for the p-version of the finite element method in the framework of weighted Besov spaces. I. Approximability of functions in the weighted Besov spaces (2001) SIAM J. Numer. Anal, 39 (5), pp. 1512-1538. , MR1885705
  • Bailey, W.N., (1964) Generalized Hypergeometric Series, , Cambridge Tracts in Mathematics and Mathematical Physics, No. 32, Stechert-Hafner, Inc., New York, MR0185155
  • Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M., Application of a fractional advection-dispersion equation (2000) Water Resources Research, 36 (6), pp. 1403-1412
  • Bergh, J., Lofstrom, J., (1976) Interpolation Spaces. An Introduction, , Springer-Verlag, Berlin-New York. Grundlehren der Mathematischen Wissenschaften, No. 223. MR0482275
  • Brandle, C., Colorado, E., de Pablo, A., Sanchez, U., A concave-convex elliptic problem involving the fractional Laplacian (2013) Proc. Roy. Soc. Edinburgh Sect. A, 143 (1), pp. 39-71. , MR3023003
  • Brenner, S.C., Scott, L.R., (1994) The mathematical theory of finite element methods, Texts in Applied Mathematics, 15. , Springer-Verlag, New York, MR1278258
  • Bruno, O.P., Lintner, S.K., Second-kind integral solvers for TE and TM problems of diffraction by open arcs Radio Science
  • Caffarelli, L., Silvestre, L., An extension problem related to the fractional Laplacian (2007) Comm. Partial Differential Equations, 32 (7-9), pp. 1245-1260. , MR2354493
  • Carr, P., Geman, H., Madan, D.B., Yor, M., The fine structure of asset returns: An empirical investigation (2002) The Journal of Business, 75 (2), pp. 305-332
  • Cont, R., Tankov, P., (2004) Financial modelling with jump processes, , Chapman & Hall/CRC Financial Mathematics Series, Chapman & Hall/CRC, Boca Raton, FL, MR2042661
  • Cozzi, M., Interior regularity of solutions of non-local equations in Sobolev and Nikol'skii spaces (2017) Ann. Mat. Pura Appl. (4), 196 (2), pp. 555-578. , MR3624965
  • D'Elia, M., Gunzburger, M., The fractional Laplacian operator on bounded domains as a special case of the nonlocal diffusion operator (2013) Comput. Math. Appl, 66 (7), pp. 1245-1260. , MR3096457
  • Di Nezza, E., Palatucci, G., Valdinoci, E., Hitchhiker's guide to the fractional Sobolev spaces (2012) Bull. Sci. Math, 136 (5), pp. 521-573. , MR2944369
  • Dyda, B., Kuznetsov, A., Kwasnicki, M., Fractional Laplace operator and Meijer Gfunction (2017) Constr. Approx, 45 (3), pp. 427-448. , MR3640641
  • Gatto, P., Hesthaven, J.S., Numerical approximation of the fractional Laplacian via hpfinite elements, with an application to image denoising (2015) J. Sci. Comput, 65 (1), pp. 249-270. , MR3394445
  • Gilboa, G., Osher, S., Nonlocal operators with applications to image processing (2008) Multiscale Model. Simul, 7 (3), pp. 1005-1028. , MR2480109
  • Grubb, G., Fractional Laplacians on domains, a development of Hormander's theory of μ-transmission pseudodifferential operators (2015) Adv. Math, 268, pp. 478-528. , MR3276603
  • Guo, B.-Y., Wang, L.-L., Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces (2004) J. Approx. Theory, 128 (1), pp. 1-41. , MR2063010
  • Hale, N., Townsend, A., Fast and accurate computation of Gauss-Legendre and Gauss-Jacobi quadrature nodes and weights (2013) SIAM J. Sci. Comput, 35 (2), pp. A652-A674. , MR3033086
  • Huang, Y., Oberman, A., Numerical methods for the fractional Laplacian: a finite difference-quadrature approach (2014) SIAM J. Numer. Anal, 52 (6), pp. 3056-3084. , MR3504596
  • Mason, J.C., Handscomb, D.C., (2003) Chebyshev Polynomials, , Chapman & Hall/CRC, Boca Raton, FL, MR1937591
  • Klafter, J., Sokolov, I.M., Anomalous diffusion spreads its wings (2005) Physics world, 18 (8), p. 29
  • Kress, R., (2014) Linear Integral Equations, 82. , Springer, New York, MR3184286, 3rd ed., Applied Mathematical Sciences
  • Langlands, T.A.M., Henry, B.I., Wearne, S.L., Fractional cable equation models for anomalous electrodiffusion in nerve cells: finite domain solutions (2011) SIAM J. Appl. Math, 71 (4), pp. 1168-1203. , MR2823498
  • Lintner, S.K., Bruno, O.P., A generalized Calderon formula for open-arc diffraction problems: theoretical considerations (2015) Proc. Roy. Soc. Edinburgh Sect. A, 145 (2), pp. 331-364. , MR3327958
  • Metzler, R., Klafter, J., The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics (2004) J. Phys. A, 37 (31), pp. R161-R208. , MR2090004
  • Nochetto, R.H., Otarola, E., Salgado, A.J., A PDE approach to fractional diffusion in general domains: a priori error analysis (2015) Found. Comput. Math, 15 (3), pp. 733-791. , MR3348172
  • Ros-Oton, X., Serra, J., The Dirichlet problem for the fractional Laplacian: regularity up to the boundary (2014) J. Math. Pures Appl. (9), 101 (3), pp. 275-302. , MR3168912
  • Rudin, W., (1964) Principles of Mathematical Analysis, , Second edition, McGraw-Hill Book Co., New York, MR0166310
  • Saad, Y., Schultz, M.H., GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems (1986) SIAM J. Sci. Statist. Comput, 7 (3), pp. 856-869. , MR848568
  • Servadei, R., Valdinoci, E., On the spectrum of two different fractional operators (2014) Proc. Roy. Soc. Edinburgh Sect. A, 144 (4), pp. 831-855. , MR3233760
  • Symm, G.T., Integral equation methods in potential theory. II (1963) Proc. Roy. Soc. Ser. A, 275, pp. 33-46. , MR0154076
  • Szego, G., (1975) Orthogonal polynomials, 23. , 4th ed., American Mathematical Society, Providence, RI. American Mathematical Society, Colloquium Publications. MR0372517
  • Valdinoci, E., From the long jump random walk to the fractional Laplacian (2009) Bol. Soc. Esp. Mat. Apl. SeMA, 49, pp. 33-44. , MR2584076
  • Xie, Z., Wang, L.-L., Zhao, X., On exponential convergence of Gegenbauer interpolation and spectral differentiation (2013) Math. Comp, 82 (282), pp. 1017-1036. , MR3008847
  • Yan, Y., Sloan, I.H., On integral equations of the first kind with logarithmic kernels (1988) J. Integral Equations Appl, 1 (4), pp. 549-579. , MR1008406
  • Zhao, X., Wang, L.-L., Xie, Z., Sharp error bounds for Jacobi expansions and Gegenbauer-Gauss quadrature of analytic functions (2013) SIAM J. Numer. Anal, 51 (3), pp. 1443-1469. , MR3053576

Citas:

---------- APA ----------
Acosta, G., Borthagaray, J.P., Bruno, O. & Maas, M. (2018) . Regularity theory and high order numerical methods for the (1D)-fractional Laplacian. Mathematics of Computation, 87(312), 1821-1857.
http://dx.doi.org/10.1090/mcom/3276
---------- CHICAGO ----------
Acosta, G., Borthagaray, J.P., Bruno, O., Maas, M. "Regularity theory and high order numerical methods for the (1D)-fractional Laplacian" . Mathematics of Computation 87, no. 312 (2018) : 1821-1857.
http://dx.doi.org/10.1090/mcom/3276
---------- MLA ----------
Acosta, G., Borthagaray, J.P., Bruno, O., Maas, M. "Regularity theory and high order numerical methods for the (1D)-fractional Laplacian" . Mathematics of Computation, vol. 87, no. 312, 2018, pp. 1821-1857.
http://dx.doi.org/10.1090/mcom/3276
---------- VANCOUVER ----------
Acosta, G., Borthagaray, J.P., Bruno, O., Maas, M. Regularity theory and high order numerical methods for the (1D)-fractional Laplacian. Math. Comput. 2018;87(312):1821-1857.
http://dx.doi.org/10.1090/mcom/3276