Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Mitogen-activated protein kinase (MAPK) signaling pathways play an essential role in the transduction of environmental stimuli to the nucleus, thereby regulating a variety of cellular processes, including cell proliferation, differentiation and programmed cell death. The components of the MAPK extracellular activated protein kinase (ERK) cascade represent attractive targets for cancer therapy as their aberrant activation is a frequent event among highly prevalent human cancers. MAPK networks are a model for computational simulation, mostly using ordinary and partial differential equations. Key results showed that these networks can have switch-like behavior, bistability and oscillations. In this work, we consider three representative ERK networks, one with a negative feedback loop, which present a binomial steady state ideal under mass-action kinetics. We therefore apply the theoretical result present in [27] to find a set of rate constants that allow two significantly different stable steady states in the same stoichiometric compatibility class for each network. Our approach makes it possible to study certain aspects of the system, such as multistationarity, without relying on simulation, since we do not assume a priori any constant but the topology of the network. As the performed analysis is general it could be applied to many other important biochemical networks. © 2015 Elsevier Inc.

Registro:

Documento: Artículo
Título:MAPK's networks and their capacity for multistationarity due to toric steady states
Autor:Pérez Millán, M.; Turjanski, A.G.
Filiación:Dto. de Matemática, FCEN, Universidad de Buenos Aires, Ciudad Universitaria, Pab. I, C1428EGABuenos Aires, Argentina
Dto. de Ciencias Exactas, CBC, Universidad de Buenos Aires, Ramos Mejía 841, C1405CAE, Buenos Aires, Argentina
Dto. de Química Biológica, FCEN, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EGA, Buenos Aires, Argentina
Palabras clave:MAPK; Mass-action kinetics; Multistationarity; Signaling networks; Toric steady states; Cell death; Cell proliferation; Cell signaling; Differential equations; Diseases; Enzyme activity; Enzymes; Feedback; Mobile security; Ordinary differential equations; Proteins; Rate constants; Signaling; MAPK; Mass action kinetics; Multistationarity; Signaling networks; Steady state; Switching circuits; mitogen activated protein kinase; phosphatase; Raf protein; biochemistry; biological analysis; cancer; cell organelle; computer simulation; enzyme activity; protein; Article; binomial distribution; controlled study; enzyme activation; enzyme activity; enzyme chemistry; mass action; mathematical computing; negative feedback; signal transduction; steady state; stoichiometry; system analysis; theoretical study; toric steady state; biological model; feedback system; human; kinetics; mathematical phenomena; Feedback, Physiological; Humans; Kinetics; MAP Kinase Signaling System; Mathematical Concepts; Models, Biological
Año:2015
Volumen:262
Página de inicio:125
Página de fin:137
DOI: http://dx.doi.org/10.1016/j.mbs.2014.12.010
Título revista:Mathematical Biosciences
Título revista abreviado:Math. Biosci.
ISSN:00255564
CODEN:MABIA
CAS:mitogen activated protein kinase, 142243-02-5; phosphatase, 9013-05-2
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00255564_v262_n_p125_PerezMillan

Referencias:

  • Asthagiri, A.R., Lauffenburger, D.A., A computational study of feedback effects on signal dynamics in a mitogen-activated protein kinase (MAPK) pathway model (2001) Biotechnol. Prog., 17, pp. 227-239
  • Conradi, C., Flockerzi, D., Multistationarity in mass action networks with applications to ERK activation (2012) J. Math. Biol., 65, pp. 107-156
  • Conradi, C., Saez-Rodriguez, J., Gilles, E.D., Raisch, J., Using chemical reaction network theory to discard a kinetic mechanism hypothesis (2005) IEE Proc. Syst. Biol. (now IET Systems Biology), 152 (4), pp. 243-248
  • Cox, D., Little, J., O'Shea, D., (1997) Ideals, Varieties and Algorithms, , Springer
  • Craciun, G., Dickenstein, A., Shiu, A., Sturmfels, B., Toric dynamical systems (2009) J. Symb. Comp., 44, pp. 1551-1565
  • Dasgupta, T., Croll, D.H., Owen, J.A., Vander Heiden, M.G., Locasale, J.W., Alon, U., Cantley, L.C., Gunawardena, J., A fundamental trade off in covalent switching and its circumvention in glucose homeostasis (2014) J. Biol. Chem, 289, pp. 13010-13025
  • Decker, W., Greuel, G.M., Pfister, G., Schönemann, H., (2012) A computer algebra system for polynomial computations, , Http://www.singular.uni-kl.de, Singular 3-1-6
  • Dougherty, M.K., Muller, J., Ritt, D.A., Zhou, M., Zhou, X.Z., Copeland, T.D., Conrads, T.P., Morrison, D.K., Regulation of RAF-1 by direct feedback phosphorylation (2005) Mol. Cell, 17, pp. 215-224
  • Feliu, E., Knudsen, M., Andersen, L.N., Wiuf, C., An algebraic approach to signaling cascades with n layers (2012) Bull. Math. Biol., 74 (1), pp. 45-72
  • Feliu, E., Wiuf, C., Enzyme sharing as a cause of multistationarity in signaling systems (2012) J. Roy. Soc. Int., 9 (71), pp. 1224-1232
  • Fujioka, A., Terai, K., Itoh, R.E., Aoki, K., Nakamura, T., Kuroda, S., Nishida, E., Matsuda, M., Dynamics of the RAS/ERK MAPK cascade as monitored by fluorescent probes (2006) J. Biol. Chem., 281 (13), pp. 8917-8926
  • Fritsche-Guenther, R., Witzel, F., Sieber, A., Herr, R., Schmidt, N., Braun, S., Brummer, T., Nils Blüuthgen, N., Strong negative feedback from ERK to RAF confers robustness to MAPK signalling (2001) Mol. Syst. Biol., 7 (489)
  • Hatakeyama, M., Kimura, S., Naka, T., Kawasaki, T., Yumoto, N., Ichikawa, M., Kim, J., Konagaya, A., A computational model on the modulation of mitogen-activated protein kinase (MAPK) and AKT pathways in heregulin-induced erbb signalling (2003) Biochem. J., 373, pp. 451-463
  • Holstein, K., Flockerzi, D., Conradi, C., Multistationarity in sequential distributed multisite phosphorylation networks (2013) Bull. Math. Biol., 75 (11), pp. 2028-2058
  • Hornberg, J.J., Binder, B., Bruggeman, F.J., Schoeber, B., Heinrich, R., Westerhoff, H.V., Control of MAPK signalling: from complexity to what really matters (2005) Oncogene, 24, pp. 5533-5542
  • Huang, C.-Y.F., Ferrell, J.E., Jr., Ultrasensitivity in the mitogen-activated protein kinase cascade (1996) Proc. Natl. Acad. Sci. U.S.A., 93, pp. 10078-10083
  • Karp, R., Pérez Millán, M., Dasgupta, T., Dickenstein, A., Gunawardena, J., Complex linear invariants of biochemical networks (2012) J. Theor. Biol., 311
  • Kholodenko, B.N., Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades (2000) Eur. J. Biochem., 267, pp. 1583-1588
  • Kolch, W., Coordinating ERK/MAPK signalling through scaffolds and inhibitors (2005) Nat. Rev. Mol. Cell Biol., 6, pp. 827-837
  • Kyriakis, J.M., Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation (2001) Physiol. Rev., 81 (2), pp. 807-869
  • Manrai, A., Gunawardena, J., The geometry of multisite phosphorylation (2008) Biophys. J., 95, pp. 5533-5543
  • Mansour, S.J., Matten, W.T., Hermann, A.S., Candie, J.M., Rong, S., Fukasawa, K., Vande Woude, G.F., Ahn, N.G., Transformation of mammalian cells by constitutively active map kinase kinase (1994) Science, 265, pp. 966-977
  • (2011), version 7.12.0 Natick, Massachusetts: The MathWorks Inc; Müller, S., Feliu, E., Regensburger, G., Conradi, C., Shiu, A., Dickenstein, A., Sign conditions for injectivity of generalized polynomial maps with applications to chemical reaction networks and real algebraic geometry (2015) Found. Comput. Math
  • Pagès, G., Lenormand, P., L'Allemain, G., Chambard, J.C., Méloche, S., Pouysségur, J., The mitogen activated protein kinases p42mapk and p44mapk are required for fibroblast cell proliferation (1993) Proc. Nat. Acad. Sci. USA, 90, pp. 8319-8323
  • Pearson, G., Robinson, F., Beers Gibson, T., Xu, B.E., Karandikar, M., Berman, K., Cobb, M.H., Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions (2001) Endocr. Rev., 22, pp. 153-183
  • Pérez Millán, M., Dickenstein, A., Shiu, A., Conradi, C., Chemical reaction systems with toric steady states (2012) B. Math. Biol., 74 (5), pp. 1027-1065
  • Qiao, L., Nachbar, R.B., Kevrekidis, I.G., Shvartsman, S.Y., Bistability and oscillations in the Huang-Ferrell model of MAPK signaling (2007) PLoS Comput. Biol., 3 (9), pp. 1819-1826
  • Schaeffer, H.J., Weber, M.J., Mitogen-activated protein kinases: specific messages from ubiquitous messengers (1999) Mol. Cell Biol., 19, pp. 2435-2444
  • Schoeberl, B., Eichler-Jonsson, C., Gilles, E.D., Muller, G., Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors (2002) Nat. Biotechnol., 20, pp. 370-375
  • Thomson, M., Gunawardena, J., The rational parameterisation theorem for multisite post-translational modification systems (2009) J. Theor. Biol., 261, pp. 626-636
  • Thomson, M., Gunawardena, J., Unlimited multistability in multisite phosphorylation systems (2009) Nature, 460, pp. 274-277
  • Turjanski, A., Vaqué, J., Gutkind, J., Map kinases and the control of nuclear events (2007) Oncogene, 26, pp. 3240-3253
  • Widmann, C., Gibson, S., Jarpe, M.B., Johnson, G.L., Mitogen-activated protein kinase conservation of a three-kinase module from yeast to human (1999) Physiol. Rev., 79, pp. 143-180
  • Zarubin, T., Han, J., Activation and signaling of the p38 MAP kinase pathway (2005) Cell Res., 15, pp. 11-18

Citas:

---------- APA ----------
Pérez Millán, M. & Turjanski, A.G. (2015) . MAPK's networks and their capacity for multistationarity due to toric steady states. Mathematical Biosciences, 262, 125-137.
http://dx.doi.org/10.1016/j.mbs.2014.12.010
---------- CHICAGO ----------
Pérez Millán, M., Turjanski, A.G. "MAPK's networks and their capacity for multistationarity due to toric steady states" . Mathematical Biosciences 262 (2015) : 125-137.
http://dx.doi.org/10.1016/j.mbs.2014.12.010
---------- MLA ----------
Pérez Millán, M., Turjanski, A.G. "MAPK's networks and their capacity for multistationarity due to toric steady states" . Mathematical Biosciences, vol. 262, 2015, pp. 125-137.
http://dx.doi.org/10.1016/j.mbs.2014.12.010
---------- VANCOUVER ----------
Pérez Millán, M., Turjanski, A.G. MAPK's networks and their capacity for multistationarity due to toric steady states. Math. Biosci. 2015;262:125-137.
http://dx.doi.org/10.1016/j.mbs.2014.12.010