Artículo

Otero, M.; Barmak, D.H.; Dorso, C.O.; Solari, H.G.; Natiello, M.A. "Modeling dengue outbreaks" (2011) Mathematical Biosciences. 232(2):87-95
La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We introduce a dengue model (SEIR) where the human individuals are treated on an individual basis (IBM) while the mosquito population, produced by an independent model, is treated by compartments (SEI). We study the spread of epidemics by the sole action of the mosquito. Exponential, deterministic and experimental distributions for the (human) exposed period are considered in two weather scenarios, one corresponding to temperate climate and the other to tropical climate. Virus circulation, final epidemic size and duration of outbreaks are considered showing that the results present little sensitivity to the statistics followed by the exposed period provided the median of the distributions are in coincidence. Only the time between an introduced (imported) case and the appearance of the first symptomatic secondary case is sensitive to this distribution. We finally show that the IBM model introduced is precisely a realization of a compartmental model, and that at least in this case, the choice between compartmental models or IBM is only a matter of convenience. © 2011 Elsevier Inc.

Registro:

Documento: Artículo
Título:Modeling dengue outbreaks
Autor:Otero, M.; Barmak, D.H.; Dorso, C.O.; Solari, H.G.; Natiello, M.A.
Filiación:Departamento de Física, FCEyN-UBA, IFIBA-CONICET, Argentina
Centre for Mathematical Sciences, Lund University, Sweden
Palabras clave:Compartmental model; Dengue; Epidemiology; Individual based model; Stochastic; Compartmental model; Dengue; IBM Models; Independent model; Individual based model; Stochastic; Temperate climate; Tropical climates; Climatology; Epidemiology; Viruses; Stochastic models; dengue fever; epidemiology; numerical model; tropical meteorology; Aedes aegypti; article; breeding; compartment model; computer simulation; dengue; Dengue virus; disease model; disease transmission; egg laying; epidemic; evolution; human; incubation time; individual based model; mosquito; nonhuman; probability; temperature; weather; Aedes; Animals; Climate; Computer Simulation; Dengue; Dengue Virus; Disease Outbreaks; Humans; Insect Vectors; Models, Biological; Stochastic Processes
Año:2011
Volumen:232
Número:2
Página de inicio:87
Página de fin:95
DOI: http://dx.doi.org/10.1016/j.mbs.2011.04.006
Título revista:Mathematical Biosciences
Título revista abreviado:Math. Biosci.
ISSN:00255564
CODEN:MABIA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00255564_v232_n2_p87_Otero

Referencias:

  • Gubler, D.J., Dengue and dengue hemorrhagic fever (1998) Clin. Microbiol. Rev., 11, p. 480
  • Newton, E.A.C., Reiter, P., A model of the transmission of dengue fever with an evaluation of the impact of ultra-low volume (ulv) insecticide applications on dengue epidemics (1992) Am. J. Trop. Med. Hyg., 47, p. 709
  • Focks, D.A., Haile, D.C., Daniels, E., Moun, G.A., Dynamics life table model for Aedes aegypti: Analysis of the literature and model development (1993) J. Med. Entomol., 30, p. 1003
  • Focks, D.A., Haile, D.C., Daniels, E., Mount, G.A., Dynamic life table model for Aedes aegypti: Simulations results (1993) J. Med. Entomol., 30, p. 1019
  • Focks, D.A., Haile, D.C., Daniels, E., Keesling, D., A simulation model of the epidemiology of urban dengue fever: Literature analysis, model development, preliminary validation and samples of simulation results (1995) Am. J. Trop. Med. Hyg., 53, p. 489
  • Otero, M., Solari, H.G., Mathematical model of dengue disease transmission by Aedes aegypti mosquito (2010) Math. Biosci., 223, p. 32
  • Otero, M., Solari, H.G., Schweigmann, N., A stochastic population dynamic model for Aedes aegypti: Formulation and application to a city with temperate climate (2006) Bull. Math. Biol., 68, p. 1945
  • Otero, M., Schweigmann, N., Solari, H.G., A stochastic spatial dynamical model for Aedes aegypti (2008) Bull. Math. Biol., 70, p. 1297
  • Esteva, L., Vargas, C., Analysis of a dengue disease transmission model (1998) Math. Biosci., 150, p. 131
  • Esteva, L., Vargas, C., A model for dengue disease with variable human population (1999) J. Math. Biol., 38, p. 220
  • Esteva, L., Vargas, C., Influence of vertical and mechanical transmission on the dynamics of dengue disease (2000) Math. Biosci., 167, p. 51
  • Bartley, L.M., Donnelly, C.A., Garnett, G.P., The seasonal pattern of dengue in endemic areas: Mathematical models of mechanisms (2002) Trans. R. Soc. Trop. Med. Hyg., 96, p. 387
  • Pongsumpun, P., Tang, I.M., Transmission of dengue hemorrhagic fever in an age structured population (2003) Math. Comput. Model., 37, p. 949
  • Magori, K., Legros, M., Puente, M.E., Focks, D.A., Scott, T.W., Lloyd, A.L., Gould, F., Skeeter buster: A stochastic, spatially explicit modeling tool for studying Aedes aegypti population replacement and population suppression strategies (2009) PLoS Negl. Trop. Dis., 3 (9), pp. e508. , http://dx.doi.org/10.1371/journal.pntd.0000508
  • Fernández, M.L., Otero, M., Solari, H.G., Schweigmann, N., Eco-epidemiological modelling of Aedes aegypti transmitted diseases. case study: Yellow fever in Buenos Aires 1870-1871, Preprint available from the authors, submitted for publication; Chowella, G., Diaz-Dueñas, P., Miller, J., Alcazar-Velazco, A., Hyman, J., Fenimore, P., Castillo-Chavez, C., Estimation of the reproduction number of dengue fever from spatial epidemic (2007) Math. Biosci., 208, p. 571
  • Favier, C., Schmit, D., Müller-Graf, C.D.M., Cazelles, B., Degallier, N., Mondet, B., Dubois, M.A., Influence of spatial heterogeneity on an emerging infectious disease: The case of dengue epidemics (2005) Proc. R. Soc. (London): Biol. Sci., 272 (1568), p. 1171
  • Grimm, V., Ten years of individual-based modelling in ecology: What have we learned and what could we learn in the future? (1999) Ecol. Model., 115 (2-3), p. 129
  • Bian, L., A conceptual framework for an individual-based spatially explicit epidemiological model (2004) Environ. Plann. B: Plann. Des., 31 (3), p. 381
  • Lloyd, A., Destabilization of epidemic models with the inclusion of realistic distributions of infectious periods (2001) Proc. R. Soci. London B, 268, p. 985
  • Lloyd, A.L., Realistic distributions of infectious periods in epidemic models: Changing patterns of persistence and dynamics (2001) Theor. Popul. Biol., 60 (1), p. 59
  • Feng, Z., Xu, D., Zhao, H., Epidemiological models with non-exponentially distributed disease stages and applications to disease control (2007) Bull. Math. Biol., 69, p. 1511
  • Fine, P., The interval between successive cases of an infectious disease (2003) Amer. J. Epidemiol., 158 (11), p. 1039
  • Nishiura, H., Halstead, S.B., Natural history of dengue virus (denv)-1 and denv-4 infections: Reanalysis of classic studies (2007) J. Infect. Dis., 195, p. 1007
  • Seijo, A., Romer, Y., Espinosa, M., Monroig, J., Giamperetti, S., Ameri, D., Antonelli, L., Brote de dengue autóctono en el area metropolitana Buenos Aires. experiencia del Hospital de enfermedades infecciosas F.J. Muñiz (2009) Medicina, 69, p. 593
  • Kendall, D.G., An artificial realization of a simple birth-and-death process (1950) J. R. Stat. Soc., Ser. B (Methodological), 12, p. 116
  • Feller, W., On the integro-differential equations of purely discontinuous Markoff processes (1940) Trans. Am. Math. Society, 48 (3), p. 488. , http://www.jstor.org/stable/1990095
  • Solari, H.G., Natiello, M.A., Stochastic population dynamics: The Poisson approximation (2003) Phys. Rev. E, 67, p. 031918
  • Myers, R.M., Varkey, M.J., Reuben, R., Jesudass, E.S., Dengue outbreak in Vellore, Southern India, in 1968, with isolation of four dengue types from man and mosquitoes (1970) Indian J. Med. Res., 58 (1), p. 24
  • Myers, R.M., Varkey, M.J., Reuben, R., Jesudass, E.S., Benjamin, B., The 1968 outbreak of dengue in Vellore Southern India (1971) Am. J. Public Health, 61 (7), p. 1379
  • Barmak, D.H., Dorso, C.O., Otero, M., Solari, H.G., arxiv:1102.3869v1, Dengue epidemics and human mobility, ; Lloyd, A.L., Zhang, J., Root, A.M., Stochasticity and heterogeneity in host vector models (2007) Interface, 4, p. 851
  • Svensson, A., A note on generation times in epidemic models (2007) Math. Biosci., 208 (1), p. 300
  • Koopman, J.S., Lynch, J.W., Individual causal models and population system models in epidemiology (1999) Am. J. Public Health, 89 (8), p. 1170
  • Wolfinsohn, M., Galun, R., A method for determining the flight range of Aedes aegypti (linn.) (1953) Bull. Res. Counc. Israel, 2, p. 433
  • Reiter, P., Amador, M.A., Anderson, R.A., Clark, G.G., Short report: Dispersal of Aedes aegypti in an urban area after blood feeding as demonstrated by rubidium-marked eggs (1995) Am. J. Trop. Med. Hyg., 52, p. 177
  • Muir, L.E., Kay, B.H., Aedes aegypti survival and dispersal estimated by mark-release-recapture in Northern Australia (1998) Am. J. Trop. Med. Hyg., 58, p. 277
  • Edman, J.D., Scott, T.W., Costero, A., Morrison, A.C., Harrington, L.C., Clark, G.G., Aedes aegypti (diptera culicidae) movement influenced by availability of oviposition sites (1998) J. Med. Entomol., 35 (4), p. 578

Citas:

---------- APA ----------
Otero, M., Barmak, D.H., Dorso, C.O., Solari, H.G. & Natiello, M.A. (2011) . Modeling dengue outbreaks. Mathematical Biosciences, 232(2), 87-95.
http://dx.doi.org/10.1016/j.mbs.2011.04.006
---------- CHICAGO ----------
Otero, M., Barmak, D.H., Dorso, C.O., Solari, H.G., Natiello, M.A. "Modeling dengue outbreaks" . Mathematical Biosciences 232, no. 2 (2011) : 87-95.
http://dx.doi.org/10.1016/j.mbs.2011.04.006
---------- MLA ----------
Otero, M., Barmak, D.H., Dorso, C.O., Solari, H.G., Natiello, M.A. "Modeling dengue outbreaks" . Mathematical Biosciences, vol. 232, no. 2, 2011, pp. 87-95.
http://dx.doi.org/10.1016/j.mbs.2011.04.006
---------- VANCOUVER ----------
Otero, M., Barmak, D.H., Dorso, C.O., Solari, H.G., Natiello, M.A. Modeling dengue outbreaks. Math. Biosci. 2011;232(2):87-95.
http://dx.doi.org/10.1016/j.mbs.2011.04.006