Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Nanotubular TiO2 coatings prepared by anodic oxidation of titanium were evaluated for the first time in the photocatalytic Cr(VI) reduction in the presence of EDTA. Small nanotubes (SN) were prepared by using aqueous hydrofluoric acid as electrolyte, and long nanotubes (LN) were made by using an ethylene glycol solution containing ammonium fluoride and water. The samples were characterized by scanning electron microscopy, X-ray diffraction and UV–Vis diffuse reflectance spectroscopy. The photocatalytic reactions were performed using [Cr(VI)]0 = 0.8 mM, an EDTA/Cr(VI) molar ratio = 1.25 and pH 2. The photocatalytic activity increased with the applied voltage due to an increase of the average diameter, wall thickness and length of the nanotubes. The most active SN coating yielded 98% of Cr(VI) transformation after 300 min, while all LN samples achieved a complete transformation in the same time or less. The photocatalytic activity was in almost cases higher than that of a P25 supported sample. © 2017 Elsevier Ltd

Registro:

Documento: Artículo
Título:Heterogeneous photocatalytic Cr(VI) reduction with short and long nanotubular TiO2 coatings prepared by anodic oxidation
Autor:Vera, M.L.; Traid, H.D.; Henrikson, E.R.; Ares, A.E.; Litter, M.I.
Filiación:Instituto de Materiales de Misiones, IMAM (CONICET-UNaM), Félix de Azara 1552, Posadas, Misiones, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz 2290, Buenos Aires, Argentina
Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones, Félix de Azara 1552, Posadas, Misiones, Argentina
Gerencia Química, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, San Martín, Prov. de Buenos Aires, Argentina
Instituto de Investigación e Ingeniería Ambiental, Universidad Nacional de Gral. San Martín, Campus Miguelete, Av. 25 de Mayo y Francia, San Martín, Prov. de Buenos Aires, Argentina
Palabras clave:Anodic oxidation; Heterogeneous photocatalysis; Hexavalent chromium; TiO2 nanotubes; Chromium compounds; Coatings; Electrolytes; Ethylene; Ethylene glycol; Hydrofluoric acid; Nanotubes; Oxidation; Photocatalysis; Scanning electron microscopy; X ray diffraction; Yarn; Ammonium fluoride; Diffuse reflectance spectroscopy; Ethylene glycol solutions; Heterogeneous photocatalysis; Hexavalent chromium; Photocatalytic activities; Photocatalytic reactions; TiO2 nanotubes; Anodic oxidation
Año:2018
Volumen:97
Página de inicio:150
Página de fin:157
DOI: http://dx.doi.org/10.1016/j.materresbull.2017.08.013
Título revista:Materials Research Bulletin
Título revista abreviado:Mater Res Bull
ISSN:00255408
CODEN:MRBUA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00255408_v97_n_p150_Vera

Referencias:

  • Riaz, U., Ashraf, S.M., Kashyap, J., (2015) Mater. Res. Bull., 71, pp. 75-90
  • Robert, D., Keller, V., Keller, N., Immobilization of a semiconductor photocatalyst on solid supports: methods, materials, and applications (2013) Photocatalysis and Water Purification. From Fundamentals to Recent Applications, pp. 145-178. , P. Pichat Wiley-VCH Weinheim
  • Pang, Y.L., Lim, S., Ong, H.C., Chong, W.T., (2014) Appl. Catal. A, 481, pp. 127-142
  • Albu, S.P., Ghicov, A., Aldabergenova, S., Drechsel, P., Le Clere, D., Thompson, G.E., Macak, J.M., Schmuki, P., (2008) Adv. Mater., 20, pp. 4135-4139
  • Grimes, C.A., Mor, G.K., TiO2 Nanotubes Arrays, Synthesis, Properties and Applications (2009), Springer New York; Lee, S.-Y., Park, S.-J., (2013) J. Ind. Eng. Chem., 19, pp. 1761-1769
  • Nakata, K., Fujishima, A., (2012) J. Photochem. Photobiol. C, 13, pp. 169-189
  • Stodolny, M., Zagrodnik, R., Nowaczyk, G., Jurga, S., (2017) Mater. Res. Bull., 94, pp. 335-341
  • Liao, A.-Z., Wang, C.-W., Chen, J.-B., Zhang, X.-Q., Li, Y., Wang, J., (2015) Mater. Res. Bull., 70, pp. 988-994
  • Pichat, P., (2014) Molecules, 19, pp. 15075-15087
  • Zalnezhad, E., Maleki, E., Banihashemian, S.M., Park, J.W., Kim, Y.B., Sarraf, M., Sarhan, A.A.D.M., Ramesh, S., (2016) Mater. Res. Bull., 78, pp. 179-185
  • Gong, D., Grimes, C.A., Varghese, O.K., Hu, W., Singh, R.S., Chen, Z., Dickey, E.C., (2001) J. Mater. Res., 16 (12), pp. 3331-3334
  • Paramasivam, I., Jha, H., Liu, N., Schmuki, P., (2012) Small, 8 (20), pp. 3073-3103
  • Oh, H.-J., Kim, I.-K., Jang, K.-W., Lee, J.-H., Lee, S., Chi, C.-S., (2012) Met. Mater. Int., 18 (4), pp. 673-677
  • Jaroenworaluck, A., Regonini, D., Bowen, C.R., Stevens, R., Allsopp, D., (2007) J. Mater. Sci., 42, pp. 6729-6734
  • Raja, K.S., Gandhi, T., Misra, M., (2007) Electrochem. Commun., 9, pp. 1069-1076
  • Regonini, D., Bowen, C.R., Jaroenworaluck, A., Stevens, R., (2013) Mater. Sci. Eng. R, 74 (12), pp. 377-406
  • Bonato, M., Ragnarsdottir, K.V., Allen, G.C., (2012) Water Air Soil Pollut., 223 (7), pp. 3845-3857
  • Marien, C.B.D., Cottineau, T., Robert, D., Drogui, P., (2016) Appl. Catal., B: Environ., 194, pp. 1-6
  • Hua, Z., Dai, Z., Bai, X., Ye, Z., Gu, H., Huang, X., (2015) J. Hazard. Mater., 293, pp. 112-121
  • Mazierski, P., Nischk, M., Golkowska, M., Lisowski, W., Gazda, M., Winiarski, M., Klimczuk, T., Zaleska-Medynska, A., (2016) Appl. Catal., B: Environ., 196, pp. 77-88
  • Oh, H.-J., Lee, J.-H., Kim, Y.-J., Suh, S.-J., Lee, J.-H., Chi, C.-S., (2008) Appl. Catal., B: Environ., 84, pp. 142-147
  • Erol, M., Dikici, T., Toparli, M., Celik, E., (2014) J. Alloys Compd., 604, pp. 66-72
  • Lin, C.J., Yu, Y.H., Liou, Y.H., (2009) Appl. Catal., B: Environ., 93, pp. 119-125
  • Bian, H., Wang, Y., Yuan, B., Cui, J., Shu, X., Wu, Y., Zhang, X., Adeloju, S., (2013) New J. Chem., 37, pp. 752-760
  • Lee, W.H., Lai, C.W., Abd Hamid, S.B., (2015) Materials, 8, pp. 2139-2153
  • Fang, D., Luo, Z., Huang, K., Lagoudas, D.C., (2011) Appl. Surf. Sci., 257, pp. 6451-6461
  • Oh, H.-J., Hock, R., Schurr, R., Hölzing, A., Chi, C.-S., (2013) J. Phys. Chem. Solids, 74, pp. 708-715
  • Zeng, X., Gan, Y.X., Clark, E., Su, L., (2011) J. Alloys Compd., 509, pp. L221-L227
  • Yan, X., Ohno, T., Nishijima, K., Abe, R., Ohtani, B., (2006) Chem. Phys. Lett., 429, pp. 606-610
  • Mills, A., (2012) Appl. Catal., B: Environ., 128, pp. 144-149
  • Ollis, D., Gomes Silva, C., Faria, J., (2015) Catal. Today, 240A, pp. 80-85
  • Litter, M.I., (1999) Appl. Catal., B: Environ., 23 (2), pp. 89-114
  • Litter, M.I., (2009) Adv. Chem. Eng., 36, pp. 37-67
  • Litter, M.I., Quici, N., (2014) New Advances of Heterogeneous Photocatalysis for Treatment of Toxic Metals and Arsenic, pp. 145-167. , B.I. Kharisov O.V. Kharissova H.V. Rasika Dias John Wiley & Sons Hoboken Ch. 9
  • Litter, M.I., (2015) Pure Appl. Chem., 87 (6), pp. 557-567
  • Litter, M.I., Quici, N., Meichtry, J.M., Senn, A.M., Photocatalytic removal of metallic and other inorganic pollutants (2016) Photocatalysis: Applications, pp. 35-71. , D.D. Dionysiou G. Li Puma J. Ye J. Schneider D. Bahnemann Royal Society London Ch. 2
  • Kleiman, A., Márquez, A., Vera, M.L., Meichtry, J.M., Litter, M.I., (2011) Appl. Catal., B: Environ., 101 (3), pp. 676-681
  • Vera, M.L., Leyva, G., Litter, M.I., Nanosc, J., (2017) Nanotech., 17 (7), pp. 4946-4954
  • Traid, H.D., Vera, M.L., Ares, A.E., Litter, M.I., (2017) Mater. Chem. Phys., 191, pp. 106-113
  • Vera, M.L., Preparación de fotocatalizadores de TiO2 soportados para su uso en potabilización de aguas (2008), Master Thesis in Materials Science and Technology, Instituto Sábato, CNEA-UNSAM, Bs.As; Meichtry, J.M., Colbeau-Justin, C., Custo, G., Litter, M.I., (2014) Appl. Catal., B: Environ., 144, pp. 189-195
  • Litter, M.I., Quici, N., Meichtry, J.M., Montesinos, V.N., Photocatalytic treatment of inorganic materials with TiO2 nanoparticles (2016) Encyclopedia of Nanoscience and Nanotechnology, , H.S. Nalwa American Scientific Publishers Valencia, California (in press)
  • Montesinos, V.N., Salou, C., Meichtry, J.M., Colbeau-Justin, C., Litter, M.I., (2016) Photochem. Photobiol. Sci., 15, pp. 228-234
  • Meichtry, J.M., Colbeau-Justin, C., Custo, G., Litter, M.I., (2014) Catal. Today, 224, pp. 236-243
  • Rasband, W., ImageJ U.S. National Institutes of Health (2014), Bethesda Maryland, USA 〈http://imagej.nih.gov/ij/〉; ASTM D1687-12. Standard Test Methods for Chromium in Water. A-Photometric Diphenyl-carbohydrazide; Mor, G.K., Varghese, O.K., Paulose, M., Shankar, K., Grimes, C.A., (2006) Sol. Energy Mater. Sol. Cells, 90, pp. 2011-2075
  • Berger, S., Hahn, R., Roy, P., Schmuki, P., (2010) Phys. Status Solidi B, 247 (10), pp. 2424-2435
  • Yasuda, K., Macak, J.M., Berger, S., Ghicov, A., Schmuki, P., (2007) J. Electrochem. Soc., 154 (9), pp. C472-C478
  • Paulose, M., Prakasam, H.E., Varghese, O.K., Peng, L., Popat, K.C., Mor, G.K., Desai, T.A., Grimes, C.A., (2007) J. Phys. Chem. C, 111, pp. 14992-14997
  • Regonini, D., Satka, A., Allsopp, D.W.E., Jaroenworaluck, A., Stevens, R., Bowen, C.R., (2009) J. Nanosci. Nanotech., 9, pp. 4410-4416
  • So, S., Lee, K., Schmuki, P., (2012) J. Am. Chem. Soc., 134, pp. 11316-11318
  • Murphy, A.B., (2007) Sol. Energy Mater. Sol. Cells, 91 (14), pp. 1326-1337
  • Mizukoshi, Y., Ohtsu, N., Semboshi, S., Masahashi, N., (2009) Appl. Catal., B: Environ., 91 (1), pp. 152-156
  • Chang, Y.-H., Liu, C.-M., Cheng, H.-E., Chen, C., (2013) ACS Appl. Mater. Interfaces, 5, pp. 3549-3555
  • Varghese, O.K., Gong, D., Paulose, M., Grimes, C.G., Dickey, E.C., (2003) J. Mater. Res., 18, pp. 156-165
  • Lai, Y., Sun, L., Chen, Y., Zhuang, H., Lin, C., Chin, J.W., (2006) J. Electrochem. Soc., 153 (7), pp. D123-D127
  • Criado, J., Real, C., (1983) Faraday Trans., 179 (12), pp. 2765-2771
  • Reidy, D.J., Holmes, J.D., Morris, M.A., (2006) J. Eur. Ceram. Soc., 26, pp. 1527-1534
  • Hanaor, D.A.H., Sorrell, C.C., (2011) J. Mater. Sci., 46, pp. 855-874
  • Smith, Y.R., Kar, A., Subramanian, V., (2009) Ind. Eng. Chem. Res., 48, pp. 10268-10276
  • Mazzarolo, A., Lee, K., Vicenzo, A., Schmuki, P., (2012) Electrochem. Commun., 22, pp. 162-165

Citas:

---------- APA ----------
Vera, M.L., Traid, H.D., Henrikson, E.R., Ares, A.E. & Litter, M.I. (2018) . Heterogeneous photocatalytic Cr(VI) reduction with short and long nanotubular TiO2 coatings prepared by anodic oxidation. Materials Research Bulletin, 97, 150-157.
http://dx.doi.org/10.1016/j.materresbull.2017.08.013
---------- CHICAGO ----------
Vera, M.L., Traid, H.D., Henrikson, E.R., Ares, A.E., Litter, M.I. "Heterogeneous photocatalytic Cr(VI) reduction with short and long nanotubular TiO2 coatings prepared by anodic oxidation" . Materials Research Bulletin 97 (2018) : 150-157.
http://dx.doi.org/10.1016/j.materresbull.2017.08.013
---------- MLA ----------
Vera, M.L., Traid, H.D., Henrikson, E.R., Ares, A.E., Litter, M.I. "Heterogeneous photocatalytic Cr(VI) reduction with short and long nanotubular TiO2 coatings prepared by anodic oxidation" . Materials Research Bulletin, vol. 97, 2018, pp. 150-157.
http://dx.doi.org/10.1016/j.materresbull.2017.08.013
---------- VANCOUVER ----------
Vera, M.L., Traid, H.D., Henrikson, E.R., Ares, A.E., Litter, M.I. Heterogeneous photocatalytic Cr(VI) reduction with short and long nanotubular TiO2 coatings prepared by anodic oxidation. Mater Res Bull. 2018;97:150-157.
http://dx.doi.org/10.1016/j.materresbull.2017.08.013