Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The degree of iron pyritization (DOP) and degree of trace metal pyritization (DTMP) were evaluated in mangrove soil profiles from an estuarine area located in Rio de Janeiro (SE Brazil). The soil pH was negatively correlated with redox potential (Eh) and positively correlated with DOP and DTMP of some elements (Mn, Cu and Pb), suggesting that pyrite oxidation generated acidity and can affect the importance of pyrite as a trace metal-binding phase, mainly in response to spatial variability in tidal flooding. Besides these aerobic oxidation effects, results from a sequential extraction analyses of reactive phases evidenced that Mn oxidized phase consumption in reaction with pyrite can be also important to determine the pyritization of trace elements. Cumulative effects of these aerobic and anaerobic oxidation processes were evidenced as factors affecting the capacity of mangrove soils to act as a sink for trace metals through pyritization processes. © 2013 Elsevier Ltd.

Registro:

Documento: Artículo
Título:Trace metal pyritization variability in response to mangrove soil aerobic and anaerobic oxidation processes
Autor:Machado, W.; Borrelli, N.L.; Ferreira, T.O.; Marques, A.G.B.; Osterrieth, M.; Guizan, C.
Filiación:Departamento de Geoquímica, Instituto de Química, Universidade Federal Fluminense, Niterói, RJ 24020-141, Brazil
Instituto de Geología de Costas y del Cuaternario (IGCyC), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC 722, Correo Central (7600) Mar del Plata, Buenos Aires, Argentina
Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CONICET, Argentina
Departamento de Ciências do Solo, Universidade de São Paulo, ESALQ/USP Piracicaba, São Paulo, Brazil
Laboratório de Geologia Marinha-LAGEMAR, Departamento de Geologia, Universidade Federal Fluminense, Niterói, RJ 24210-340, Brazil
Palabras clave:Metals; Pyrite oxidation; Pyritization; Redox processes; Sequential extraction; Metals; Pyrite oxidation; Pyritization; Redox processes; Sequential extraction; Anaerobiosis; Biodegradation, Environmental; Brazil; Environmental Monitoring; Geologic Sediments; Iron; Metals; Oxidation-Reduction; Soil; Soil Pollutants; Sulfides; Water Pollutants, Chemical; Wetlands
Año:2014
Volumen:79
Número:1-2
Página de inicio:365
Página de fin:370
DOI: http://dx.doi.org/10.1016/j.marpolbul.2013.11.016
Título revista:Marine Pollution Bulletin
Título revista abreviado:Mar. Pollut. Bull.
ISSN:0025326X
CODEN:MPNBA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0025326X_v79_n1-2_p365_Machado

Referencias:

  • Alongi, D.M., Wattayakorn, G., Boyle, S., Tirendi, F., Payn, C., Dixon, P., Influence of roots and climate on mineral and trace element storage and flux in tropical mangrove soils (2003) Biogeochemistry, 69, pp. 105-123
  • Álvarez-Iglesias, P., Rubio, B., Redox status and heavy metal risk in intertidal sediments in NW Spain as inferred from the degrees of pyritization of iron and trace elements (2009) Mar. Pollut. Bull., 58, pp. 542-551
  • Andrade, R.A., Sanders, C.J., Boaventura, G., Patchineelam, S.R., Pyritization of trace metals in mangrove sediments (2012) Environ. Earth Sci., 67, pp. 1757-1762
  • Araújo, J.M.C., Otero, X.L., Marques, A.G.B., Nóbrega, G.N., Silva, J.R.F., Ferreira, T.O., Selective geochemistry of iron in mangrove soils in a semiarid tropical climate: effects of the burrowing activity of the crabs Ucides cordatus and Uca maracoani (2012) Geo-Mar. Lett., 32, pp. 289-300
  • Berner, R.A., Sedimentary pyrite formation (1970) Am. J. Sci., 268, pp. 1-23
  • Clark, M.W., McConchie, D.M., Lewis, D.W., Saenger, P., Redox stratification and heavy metal partitioning in Avicennia-dominated mangrove sediments: a geochemical model (1998) Chem. Geol., 149, pp. 147-171
  • Ferreira, T.O., Otero, X.L., Vidal-Torrado, P., Macías, F., Effects of bioturbation by root and crab activity on iron and sulfur biogeochemistry in mangrove substrate (2007) Geoderma, 142, pp. 36-46
  • Ferreira, T.O., Otero, X.L., Vidal-Torrado, P., Macías, F., Redox processes in mangrove soils under Rhizophora mangle in relation to different environmental conditions (2007) Soil Sci. Soc. Am. J., 71, pp. 484-491
  • Ferreira, T.O., Vidal-Torrado, P., Otero, X.L., Macías, F., Are mangrove forest substrates sediments or soils? A case study in southeastern Brazil (2007) Catena, 70, pp. 79-91
  • Ferreira, T.O., Otero, X.L., Souza, V.S., Vidal-Torrado, P., Macías, F., Firme, L.P., Spatial patterns of soil attributes and components in a mangrove system in Southeast Brazil (São Paulo) (2010) J. Soils Sediments, 10, pp. 995-1006
  • Fortin, D., Leppard, G.G., Tessier, A., Characteristics of lacustrine diagenetic iron oxyhydroxides (1993) Geochim. Cosmochim. Acta, 57, pp. 4391-4404
  • Gomes, F.C., Godoy, J.M., Godoy, M.L.D.P., Carvalho, Z.L., Lopes, R.T., Sanchez-Cabeza, J.A., Lacerda, L.D., Wasserman, J.C., Metal concentrations, fluxes, inventories and chronologies in sediments from Sepetiba and Ribeira Bays: a comparative study (2009) Mar. Pollut. Bull., 59, pp. 123-133
  • Gueiros, B.B., Machado, W., Lisboa Filho, S.D., Lacerda, L.D., Manganese behavior at the sediment-water interface in a mangrove dominated area in Sepetiba Bay, SE Brazil (2003) J. Coastal Res., 19, pp. 550-559
  • Harbison, P., Mangrove muds-a sink and source for trace metals (1986) Mar. Pollut. Bull., 17, pp. 273-276
  • Holmer, M., Kristensen, E., Banta, G., Hansen, K., Jensen, M.H., Bussawarit, N., Biogeochemical cycling of sulfur and iron in sediments of a southeast Asian mangrove, Phuket Island, Thailand (1994) Biogeochemistry, 26, pp. 145-161
  • Huerta-Díaz, M.A., Morse, J.W., A quantitative method for determination of trace metals in sedimentary pyrite (1990) Mar. Chem., 29, pp. 119-144
  • Huerta-Diaz, M.A., Morse, J.W., Pyritization of trace metals in anoxic marine sediments (1992) Geochim. Cosmochim. Acta, 56, pp. 2681-2702
  • Huerta-Diaz, M.A., Delgadillo-Hinojosa, F., Otero, X.L., Segovia-Zavala, J.A., Hernández-Ayon, J.M., Galindo-Bect, M.S., Amaro-Franco, E., Iron and trace metals in microbial mats and underlying sediments: results from Guerrero Negro saltern, Baja California Sur, Mexico (2011) Aquat. Geochem., 17, pp. 603-628
  • Keene, A.F., Johnston, S.G., Bush, R.T., Burton, E.D., Sullivan, L.A., Reactive trace element enrichment in a highly modified, tidally inundated acid sulfate soil wetland: East Trinity, Australia (2010) Mar. Pollut. Bull., 60, pp. 620-626
  • Lacerda, L.D., Carvalho, C.E.V., Tanizaki, K.F., Ovalle, A.R.C., Rezende, C.E., The biogeochemistry and trace metals distribution of mangrove rhizospheres (1993) Biotropica, 25, pp. 252-257
  • Machado, W., Silva Filho, E.V., Oliveira, R.R., Lacerda, L.D., Trace metal retention in mangrove ecosystems in Guanabara Bay, SE Brazil (2002) Mar. Pollut. Bull., 44, pp. 1277-1280
  • Marchand, C., Lallier-Vergès, E., Baltzer, F., Albéric, P., Cossa, D., Baillif, P., Heavy metals distribution in mangrove sediments along the mobile coastline of French Guiana (2006) Mar. Chem., 98, pp. 1-17
  • Marchand, C., Fernandez, J.-M., Moreton, B., Landi, L., Lallier-Vergès, E., Baltzer, F., The partitioning of transitional metals (Fe, Mn, Ni, Cr) in mangrove sediments downstream of a ferralitized ultramafic watershed (New Caledonia) (2012) Chem. Geol., pp. 70-80
  • Marcovecchio, J., Botté, S., Severini, M.F., Delucchi, F., Geochemical control of heavy metal concentrations and distribution within Bahia Blanca estuary (Argentina) (2010) Aquat. Geochem., 16, pp. 251-266
  • Marques, A.N., Monna, F., Silva-Filho, E.V., Fernex, F.E., Simões-Filho, F.F.L., Apparent discrepancy in contamination history of a sub-tropical estuary evaluated through 210Pb profile and chronostratigraphical markers (2006) Mar. Pollut. Bull., 52, pp. 532-539
  • Monteiro, F.F., Cordeiro, R.C., Santelli, R.E., Machado, W., Evangelista, H., Villar, L.S., Viana, L.C.A., Bidone, E.D., Sedimentary geochemical record of historical anthropogenic activities affecting Guanabara Bay (Brazil) environmental quality (2012) Environ. Earth Sci., 65, pp. 1661-1669
  • Morse, J.W., Luther, G.W., Chemical influences on trace metal-sulfide interactions in anoxic sediments (1999) Geochim. Cosmochim. Acta, 63, pp. 3373-3378
  • Morse, J.W., Presley, B.J., Taylor, R.J., Benoit, G., Santschi, P., Trace metal chemistry of Galveston Bay: water, sediments and biota (1993) Mar. Environ. Res., 36, pp. 1-37
  • Morse, J.W., Interactions of trace metals with authigenic sulfide minerals: implications for their bioavailability (1994) Mar. Chem., 46, pp. 1-6
  • Oliveira, F.L., Mello, E.F., A mineração de areia e os impactos ambientais na bacia do rio São João, RJ (2007) Revista Brasileira de Geociências, 37, pp. 374-389
  • Otero, X.L., Macías, F., Variation with depth and season in metal sulfides in salt marsh soils (2002) Biogeochemistry, 61, pp. 247-268
  • Otero, X.L., Ferreira, T.O., Vidal-Torrado, P., Macías, F., Spatial variation in pore water geochemistry in a mangrove system (Pai Matos island, Cananeia-Brazil) (2006) Appl. Geochem., 21, pp. 2171-2186
  • Otero, X.L., Ferreira, T.O., Huerta-Díaz, M.A., Partiti, C.S.M., Souza, V., Vidal-Torrado, P., Macías, F., Geochemistry of iron and manganese in soils and sediments of a mangrove system, Island of Pai Matos (Cananeia-SP, Brazil) (2009) Geoderma, 148, pp. 318-335
  • Schippers, A., Jørgensen, B.B., Biogeochemistry of pyrite and iron sulfide oxidation in marine sediments (2002) Geochim. Cosmochim. Acta, 66, pp. 85-92
  • Sherman, R.E., Fahey, T.J., Howarth, R.W., Soil-plant interactions in a neotropical mangroves forest: iron, phosphorus and sulfur dynamics (1998) Oecologia, 115, pp. 553-563
  • Suzuki, K.N., Machado, E.C., Machado, W., Bellido, A.V., Bellido, L.F., Osso, J.A., Lopes, R.T., Selenium, chromium and cobalt diffusion into mangrove sediments: radiotracer experiment evidence of coupled effects of bioturbation and rhizosphere (2012) Water Air Soil Pollut., 223, pp. 3887-3892
  • Tessier, A., Campbell, P.G.C., Bisso, M., Sequencial extraction procedure for the speciation of particulate trace metals (1979) Anal. Chem., 5, pp. 844-855
  • Ye, S., Laws, E.A., Zhong, S., Ding, X., Pang, S., Sequestration of metals through association with pyrite in subtidal sediments of the Nanpaishui Estuary on the Western Bank of the Bohai Sea, China (2011) Mar. Pollut. Bull., 62, pp. 934-941

Citas:

---------- APA ----------
Machado, W., Borrelli, N.L., Ferreira, T.O., Marques, A.G.B., Osterrieth, M. & Guizan, C. (2014) . Trace metal pyritization variability in response to mangrove soil aerobic and anaerobic oxidation processes. Marine Pollution Bulletin, 79(1-2), 365-370.
http://dx.doi.org/10.1016/j.marpolbul.2013.11.016
---------- CHICAGO ----------
Machado, W., Borrelli, N.L., Ferreira, T.O., Marques, A.G.B., Osterrieth, M., Guizan, C. "Trace metal pyritization variability in response to mangrove soil aerobic and anaerobic oxidation processes" . Marine Pollution Bulletin 79, no. 1-2 (2014) : 365-370.
http://dx.doi.org/10.1016/j.marpolbul.2013.11.016
---------- MLA ----------
Machado, W., Borrelli, N.L., Ferreira, T.O., Marques, A.G.B., Osterrieth, M., Guizan, C. "Trace metal pyritization variability in response to mangrove soil aerobic and anaerobic oxidation processes" . Marine Pollution Bulletin, vol. 79, no. 1-2, 2014, pp. 365-370.
http://dx.doi.org/10.1016/j.marpolbul.2013.11.016
---------- VANCOUVER ----------
Machado, W., Borrelli, N.L., Ferreira, T.O., Marques, A.G.B., Osterrieth, M., Guizan, C. Trace metal pyritization variability in response to mangrove soil aerobic and anaerobic oxidation processes. Mar. Pollut. Bull. 2014;79(1-2):365-370.
http://dx.doi.org/10.1016/j.marpolbul.2013.11.016