Abstract:
In this paper, the existence problem is studied for extremals of the Sobolev trace inequality W1,p(Ω) → L p(∂Ω), where Ω is abounded smooth domain in ℝN, p* = p(N - 1)/(N - p) is the critical Sobolev exponent, and 1 < p < N. © 2005 London Mathematical Society.
Registro:
Documento: |
Artículo
|
Título: | On the existence of extremals for the Sobolev trace embedding theorem with critical exponent |
Autor: | Bonder, J.F.; Rossi, J.D. |
Filiación: | Departemento de Matemática, FCEyN, UBA (1428), Buenos Aires, Argentina Departamento de Matemática, Universidad Católica de Chile, Casilla 306, Correo 22, Santiago, Chile
|
Año: | 2005
|
Volumen: | 37
|
Número: | 1
|
Página de inicio: | 119
|
Página de fin: | 125
|
DOI: |
http://dx.doi.org/10.1112/S0024609304003819 |
Título revista: | Bulletin of the London Mathematical Society
|
Título revista abreviado: | Bull. Lond. Math. Soc.
|
ISSN: | 00246093
|
Registro: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00246093_v37_n1_p119_Bonder |
Referencias:
- Adimurthi, S.L.Y., Positive solution for Neumann problem with critical non linearity on boundary (1991) Comm. Partial Differential Equations, 16, pp. 1733-1760
- Aubin, T., Équations différentielles non linéaires et le problème de Yamabe concernant la courbure scalaire (1976) J. Math. Pures et Appl., 55, pp. 269-296
- Aubin, T., Problèmes isopérimétriques et espaces de Sobolev (1976) J. Differential Geom., 11, pp. 573-598
- Biezuner, R.J., Best constants in Sobolev trace inequalities (2003) Nonlinear Analysis, 54, pp. 575-589
- Brezis, H., Nirenberg, L., Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents (1983) Comm. Pure Appl. Math., 36, pp. 437-477
- Druet, O., Hebey, E., The AB program in geometric analysis: Sharp Sobolev inequalities and related problems (2002) Mem. Amer. Math. Soc., 160
- Escobar, J.F., Sharp constant in a Sobolev trace inequality (1988) Indiana Math. J., 37, pp. 687-698
- Bonder, J.F., Rossi, J.D., Asymptotic behavior of the best Sobolev trace constant in expanding and contracting domains (2002) Comm. Pure Appl. Anal., 1, pp. 359-378
- Bonder, J.F., Ferreira, R., Rossi, J.D., Uniform bounds for the best Sobolev trace constant (2003) Advanced Nonlinear Studies, 3, pp. 181-192
- Bonder, J.F., Dozo, E.L., Rossi, J.D., Symmetry properties for the extremals of the Sobolev trace embedding in small balls Ann. Inst. H. Poincaré Anal. Non Linéaire, , to appear
- Gidas, B., Ni, W.M., Nirenberg, L., Symmetry and related properties via maximum principle (1979) Comm. Math. Phys., 68, pp. 209-243
- Li, Y., Zhu, M., Sharp Sobolev trace inequalities on Riemannian manifolds with boundaries (1997) Comm. Pure Appl. Math., 50, pp. 449-487
- Del Pino, M., Flores, C., Asymptotic behavior of best constants and extremals for trace embeddings in expanding domains (2001) Comm. Partial Differential Equations, 26, pp. 2189-2210
- Tolksdorf, P., Regularity for a more general class of quasilinear elliptic equations (1984) J. Differential Equations, 51, pp. 126-150
- Vazquez, J.L., A strong maximum principle for some quasilinear elliptic equations (1984) Appl. Math. Optim., 12, pp. 191-202
- Yamabe, H., On a deformation of Riemannian structures on compact mainfolds (1960) Osaka Math. J., 12, pp. 21-37
Citas:
---------- APA ----------
Bonder, J.F. & Rossi, J.D.
(2005)
. On the existence of extremals for the Sobolev trace embedding theorem with critical exponent. Bulletin of the London Mathematical Society, 37(1), 119-125.
http://dx.doi.org/10.1112/S0024609304003819---------- CHICAGO ----------
Bonder, J.F., Rossi, J.D.
"On the existence of extremals for the Sobolev trace embedding theorem with critical exponent"
. Bulletin of the London Mathematical Society 37, no. 1
(2005) : 119-125.
http://dx.doi.org/10.1112/S0024609304003819---------- MLA ----------
Bonder, J.F., Rossi, J.D.
"On the existence of extremals for the Sobolev trace embedding theorem with critical exponent"
. Bulletin of the London Mathematical Society, vol. 37, no. 1, 2005, pp. 119-125.
http://dx.doi.org/10.1112/S0024609304003819---------- VANCOUVER ----------
Bonder, J.F., Rossi, J.D. On the existence of extremals for the Sobolev trace embedding theorem with critical exponent. Bull. Lond. Math. Soc. 2005;37(1):119-125.
http://dx.doi.org/10.1112/S0024609304003819