Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The tectonic and geodynamic setting of the southern Central Andean convergent margin changed significantly between the Late Cretaceous and the Late Miocene, influencing magmatic activity and its geochemical composition. Here we investigate how these changes, which include changing slab-dip angle and convergence angles and rates, have influenced the contamination of the arc magmas with crustal material. Whole rock geochemical data for a suite of Late Cretaceous to Late Miocene arc rocks from the Pampean flat-slab segment (29–31 °S) of the southern Central Andes is presented alongside petrographic observations and high resolution age dating. In-situ U–Pb dating of magmatic zircon, combined with Ar–Ar dating of plagioclase, has led to an improved regional stratigraphy and provides an accurate temporal constraint for the geochemical data. A generally higher content of incompatible trace elements (e.g. Nb/Zr ratios from 0.019 to 0.083 and Nb/Yb from 1.5 to 16.4) is observed between the Late Cretaceous (~ 72 Ma), when the southern Central Andean margin is suggested to have been in extension, and the Miocene when the thickness of the continental crust increased and the angle of the subducting Nazca plate shallowed. Trace and rare earth element compositions obtained for the Late Cretaceous to Late Eocene arc magmatic rocks from the Principal Cordillera of Chile, combined with a lack of zircon inheritance, suggest limited assimilation of the overlying continental crust by arc magmas derived from the mantle wedge. A general increase in incompatible, fluid-mobile/immobile (e.g., Ba/Nb) and fluid-immobile/immobile (e.g., Nb/Zr) trace element ratios is attributed to the influence of the subducting slab on the melt source region and/or the influx of asthenospheric mantle. The Late Oligocene (~ 26 Ma) to Early Miocene (~ 17 Ma), and Late Miocene (~ 6 Ma) arc magmatic rocks present in the Frontal Cordillera show evidence for the bulk assimilation of the Permian–Triassic (P–T) basement, both on the basis of their trace and rare earth element compositions and the presence of P–T inherited zircon cores. Crustal reworking is also identified in the Argentinean Precordillera; Late Miocene (12–9 Ma) arc magmatic rocks display distinct trace element signatures (specifically low Th, U and REE concentrations) and contain inherited zircon cores with Proterozoic and P–T ages, suggesting the assimilation of both the P–T basement and a Grenville-aged basement. We conclude that changing geodynamics play an important role in determining the geochemical evolution of magmatic rocks at convergent margins and should be given due consideration when evaluating the petrogenesis of arc magmas. © 2016

Registro:

Documento: Artículo
Título:The role of changing geodynamics in the progressive contamination of Late Cretaceous to Late Miocene arc magmas in the southern Central Andes
Autor:Jones, R.E.; Kirstein, L.A.; Kasemann, S.A.; Litvak, V.D.; Poma, S.; Alonso, R.N.; Hinton, R.
Filiación:School of GeoSciences, University of Edinburgh, The King's Buildings, James Hutton Road, Edinburgh, EH9 3FE, United Kingdom
Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN, United Kingdom
Faculty of Geosciences & MARUM, Centre for Marine Environmental Sciences, University of Bremen, Bremen, 28334, Germany
Universidad de Buenos Aires, CONICET, Instituto de Estudios Andinos Don Pablo Groeber (IDEAN), Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
Universidad de Buenos Aires, CONICET, Instituto de Geociencias Básicas y Aplicadas de Buenos Aires (IGEBA), Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
Departamento de Geología, Universidad Nacional de Salta, CONICET, Salta, 4400, Argentina
Edinburgh Ion Microprobe Facility, School of GeoSciences, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JW, United Kingdom
Palabras clave:Arc magma petrogenesis; Central Andes; Crustal contamination; Geochronology; Geodynamics; argon-argon dating; continental crust; convergent margin; Cretaceous; geochronology; geodynamics; magma; Miocene; petrogenesis; subduction; uranium-lead dating; zircon; Andes
Año:2016
Volumen:262
Página de inicio:169
Página de fin:191
DOI: http://dx.doi.org/10.1016/j.lithos.2016.07.002
Título revista:Lithos
Título revista abreviado:Lithos
ISSN:00244937
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00244937_v262_n_p169_Jones

Referencias:

  • Abbruzzi, J., Kay, S.M., Bickford, M.E., Implications for the nature of the Precordilleran basement from the geochemistry and age of Precambrian xenoliths in Miocene volcanic rocks, San Juan province (1993) Actas, 3, pp. 331-339
  • Allmendinger, R., Figueroa, D., Snyder, D., Beer, J., Mpodozis, C., Isacks, B., Foreland shortening and crustal balancing in the Andes at 30 S latitude (1990) Tectonics, 9, pp. 789-809
  • Astini, R.A., Benedetto, J.L., Vaccari, N.E., The early Paleozoic evolution of the Argentine Precordillera as a Laurentian rifted, drifted, and collided terrane: a geodynamic model (1995) Geological Society of America Bulletin, 107, pp. 253-273
  • Beard, J.S., Ragland, P.C., Crawford, M.L., Reactive bulk assimilation: a model for crust–mantle mixing in silicic magmas (2005) Geology, 33, pp. 681-684
  • Bissig, T., Lee, J.K.W., Clark, A.H., Heather, K.B., The Cenozoic History of Volcanism and Hydrothermal Alteration in the Central Andean Flat-Slab Region: new 40Ar–39Ar Constraints from the El Indio–Pascua Au (− Ag, Cu) Belt, 29°20′–30°30′ S (2001) International Geology Review, 43, pp. 312-340
  • Bissig, T., Clark, A.H., Lee, J.K., von Quadt, A., Petrogenetic and metallogenetic responses to Miocene slab flattening: new constraints from the El Indio-Pascua Au–Ag–Cu belt, Chile/Argentina (2003) Mineralium Deposita, 38, pp. 844-862
  • Cahill, T., Isacks, B.L., Seismicity and shape of the subducted Nazca plate (1992) Journal of Geophysical Research: Solid Earth (1978–2012), 97, pp. 17503-17529
  • Cardó, R., Díaz, I.N., Hoja Geológica 3169-I, Rodeo, Provincias de San Juan (1999), Instituto de Geología y Recursos Minerales, Servicio Geológico Minero Argentino Buenos Aires; Cardó, R., Díaz, I.N., Limarino, C.O., Litvak, V.D., Poma, S., Santamaria, G., Hoja Geológica 2969-III, Malimán, provincias de San Juan y La Rioja, Boletín 320 ed. (2007), Instituto de Geología y Recursos Minerales, Servicio Geológico Minero Argentino Buenos Aires; Castillo, P.R., Adakite petrogenesis (2012) Lithos, 134, pp. 304-316
  • Castillo, P.R., Janney, P.E., Solidum, R.U., Petrology and geochemistry of Camiguin Island, southern Philippines: insights to the source of adakites and other lavas in a complex arc setting (1999) Contributions to Mineralogy and Petrology, 134, pp. 33-51
  • Charrier, R., Pinto, L., Rodríguez, M.P., Tectonostratigraphic evolution of the Andean Orogen in Chile (2007) The Geology of Chile, pp. 21-114. , T. Moreno W. Gibbons The Geological Society London
  • Chulick, G.S., Detweiler, S., Mooney, W.D., Seismic structure of the crust and uppermost mantle of South America and surrounding oceanic basins (2013) Journal of South American Earth Sciences, 42, pp. 260-276
  • Chung, S.-L., Liu, D., Ji, J., Chu, M.-F., Lee, H.-Y., Wen, D.-J., Lo, C.-H., Zhang, Q., Adakites from continental collision zones: melting of thickened lower crust beneath southern Tibet (2003) Geology, 31, pp. 1021-1024
  • Cribb, J.W., Barton, M., Geochemical effects of decoupled fractional crystallization and crustal assimilation (1996) Lithos, 37, pp. 293-307
  • Davidson, J.P., Harmon, R.S., Wörner, G., The source of central Andean magmas; some considerations (1991) Geological Society of America Special Papers, 265, pp. 233-244
  • Davidson, J., Turner, S., Handley, H., Macpherson, C., Dosseto, A., Amphibole “sponge” in arc crust? (2007) Geology, 35, pp. 787-790
  • Defant, M.J., Drummond, M.S., Derivation of some modern arc magmas by melting of young subducted lithosphere (1990) Nature, 347, pp. 662-665
  • Drummond, M.S., Defant, M.J., A model for Trondhjemite–Tonalite–Dacite genesis and crustal growth via slab melting: archean to modern comparisons (1990) Journal of Geophysical Research: Solid Earth, 95, pp. 21503-21521
  • Emparan, C., Pineda, G., Area Condoriaco-Rivadavia, Región de Coquimbo (1999), Servicio Nacional de Geologia y Mineria, Mapas Geológicos Santiago; Ersoy, Y., Helvacı, C., FC–AFC–FCA and mixing modeler: a Microsoft® Excel© spreadsheet program for modeling geochemical differentiation of magma by crystal fractionation, crustal assimilation and mixing (2010) Computers & Geosciences, 36, pp. 383-390
  • Finney, S., The parautochthonous Gondwanan origin of the Cuyania (greater Precordillera) terrane of Argentina: a re-evaluation of evidence used to support an allochthonous Laurentian origin (2007) Geologica Acta: An International Earth Science Journal, 5, pp. 127-158
  • Fitton, J.G., Godard, M., Origin and evolution of magmas on the Ontong Java Plateau (2004) Geological Society, London, Special Publications, 229, pp. 151-178
  • Fitton, J.G., Saunders, A.D., Larsen, L.M., Hardarson, B.S., Norry, M.J., Volcanic rocks from the southeast Greenland margin at 63°N: composition, petrogenesis, and mantle sources (1998) Proceedings of the Ocean Drilling Programme Scientific Results, 152, pp. 331-350
  • Fromm, R., Zandt, G., Beck, S.L., Crustal thickness beneath the Andes and Sierras Pampeanas at 30°S inferred from Pn apparent phase velocities (2004) Geophysical Research Letters, 31. , L06625
  • Gans, C.R., Beck, S.L., Zandt, G., Gilbert, H., Alvarado, P., Anderson, M., Linkimer, L., Continental and oceanic crustal structure of the Pampean flat slab region, western Argentina, using receiver function analysis: new high-resolution results (2011) Geophysical Journal International, 186, pp. 45-58
  • Gilbert, H., Beck, S., Zandt, G., Lithospheric and upper mantle structure of central Chile and Argentina (2006) Geophysical Journal International, 165, pp. 383-398
  • Goss, A., Kay, S., Mpodozis, C., The geochemistry of a dying continental arc: the Incapillo Caldera and Dome Complex of the southernmost Central Andean Volcanic Zone (~ 28° S) (2011) Contributions to Mineralogy and Petrology, 161, pp. 101-128
  • Goss, A.R., Kay, S.M., Mpodozis, C., Andean adakite-like high-Mg andesites on the northern margin of the Chilean–Pampean flat-slab (27–28.5° S) associated with frontal arc migration and fore-arc subduction erosion (2013) Journal of Petrology, 54, pp. 2193-2234
  • Gregory-Wodzicki, K.M., Uplift history of the Central and Northern Andes: a review (2000) Geological Society of America Bulletin, 112, pp. 1091-1105
  • Gutscher, M.-A., Maury, R., Eissen, J.-P., Bourdon, E., Can slab melting be caused by flat subduction? (2000) Geology, 28, pp. 535-538
  • Gutscher, M.A., Spakman, W., Bijwaard, H., Engdahl, E.R., Geodynamics of flat subduction: seismicity and tomographic constraints from the Andean margin (2000) Tectonics, 19, pp. 814-833
  • Hildreth, W., Moorbath, S., Crustal contributions to arc magmatism in the Andes of Central Chile (1988) Contributions to Mineralogy and Petrology, 98, pp. 455-489
  • Irvine, T., Baragar, W., A guide to the chemical classification of the common volcanic rocks (1971) Canadian Journal of Earth Sciences, 8, pp. 523-548
  • Jacques, G., Hoernle, K., Gill, J., Hauff, F., Wehrmann, H., Garbe-Schönberg, D., van den Bogaard, P., Lara, L., Across-arc geochemical variations in the Southern Volcanic Zone, Chile (34.5–38.0° S): constraints on mantle wedge and slab input compositions (2013) Geochimica et Cosmochimica Acta, 123, pp. 218-243
  • James, D.E., A combined O, Sr, Nd, and Pb isotopic and trace element study of crustal contamination in central Andean lavas, I. Local geochemical variations (1982) Earth and Planetary Science Letters, 57, pp. 47-62
  • Jarvis, A., Reuter, H.I., Nelson, A., Guevara, E., Hole-filled SRTM for the Globe Version 4, Available from the CGIAR-CSI SRTM 90m Database (2008); JICA-MMAJ, (1999) Informe de la exploración de mineral en la región Cordillera Oriental Andina, República Argentina, p. 164. , SEGEMAR Buenos Aires
  • Jones, R.E., De Hoog, J.C.M., Kirstein, L.A., Kasemann, S.A., Hinton, R., Elliott, T., Litvak, V.D., Temporal variations in the influence of the subducting slab on Central Andean arc magmas: evidence from boron isotope systematics (2014) Earth and Planetary Science Letters, 408, pp. 390-401
  • Jones, R.E., Kirstein, L.A., Kasemann, S.A., Dhuime, B., Elliott, T., Litvak, V.D., Alonso, R., Hinton, R., Geodynamic controls on the contamination of Cenozoic arc magmas in the southern Central Andes: insights from the O and Hf isotopic composition of zircon (2015) Geochimica et Cosmochimica Acta, 164, pp. 386-402
  • Jordan, T.E., Isacks, B.L., Allmendinger, R.W., Brewer, J.A., Ramos, V.A., Ando, C.J., Andean tectonics related to geometry of subducted Nazca plate (1983) Geological Society of America Bulletin, 94, pp. 341-361
  • Kay, R.W., Aleutian magnesian andesites: melts from subducted Pacific ocean crust (1978) Journal of Volcanology and Geothermal Research, 4, pp. 117-132
  • Kay, S.M., Abbruzzi, J.M., Magmatic evidence for Neogene lithospheric evolution of the central Andean “flat slab” between 30°S and 32°S (1996) Tectonophysics, 259, pp. 15-28
  • Kay, S., Gordillo, C., Pocho volcanic rocks and the melting of depleted continental lithosphere above a shallowly dipping subduction zone in the central Andes (1994) Contributions to Mineralogy and Petrology, 117, pp. 25-44
  • Kay, S.M., Mpodozis, C., Magmatism as a probe to the Neogene shallowing of the Nazca plate beneath the modern Chilean flat slab (2002) Journal of South American Earth Sciences, 15, pp. 39-57
  • Kay, S.M., Orrell, S., Zircon and whole rock Nd–Pb isotopic evidence for a Grenville age and a Laurentian origin for the Basement of the Precordillera in Argentina (1996) Journal of Geology, 104, p. 637
  • Kay, S.M., Maksaev, V., Moscoso, R., Mpodozis, C., Nasi, C., Probing the evolving Andean lithosphere; Mid–Late Tertiary magmatism in Chile (29°–30°30′S) over the modern zone of subhorizontal subduction (1987) Journal of Geophysical Research, 92, pp. 6173-6189
  • Kay, S.M., Ramos, V.A., Mpodozis, C., Sruoga, P., Late Paleozoic to Jurassic silicic magmatism at the Gondwana margin: analogy to the Middle Proterozoic in North America? (1989) Geology, 17, pp. 324-328
  • Kay, S.M., Mpodozis, C., Ramos, V.A., Munizaga, F., Magma source variations for mid-late Tertiary magmatic rocks associated with a shallowing subduction zone and the thickening crust in the central Andes (28–33°S) (1991) Spec. Pap. Geological Society of America Bulletin, 265, pp. 113-137
  • Kay, S.M., Orrell, S., Abbruzzi, J.M., Zircon and whole rock Nd–Pb isotopic evidence for a Grenville age and a Laurentian origin for the basement of the Precordillera in Argentina (1996) The Journal of Geology, 104, pp. 637-648
  • Kay, S.M., Godoy, E., Kurtz, A., Episodic arc migration, crustal thickening, subduction erosion, and magmatism in the south-central Andes (2005) Geological Society of America Bulletin, 117, pp. 67-88
  • Keller, M., Argentine precordillera: sedimentary and plate tectonic history of a Laurentian crustal fragment in South America (1999) Geological Society of America Special Papers, 341, pp. 1-131
  • Kelly, N., Hinton, R., Harley, S., Appleby, S., New SIMS U–Pb zircon ages from the Langavat Belt, South Harris, NW Scotland: implications for the Lewisian terrane model (2008) Journal of the Geological Society, 165, pp. 967-981
  • Kilian, R., Behrmann, J.H., Geochemical constraints on the sources of Southern Chile Trench sediments and their recycling in arc magmas of the Southern Andes (2003) Journal of the Geological Society, 160, pp. 57-70
  • Kirby, S., Engdahl, R.E., Denlinger, R., Intermediate-depth intraslab earthquakes and arc volcanism as physical expressions of crustal and uppermost mantle metamorphism in subducting slabs (1996) Subduction top to bottom, pp. 195-214
  • Kopp, H., Flueh, E.R., Papenberg, C., Klaeschen, D., Seismic investigations of the O'Higgins Seamount Group and Juan Fernández Ridge: aseismic ridge emplacement and lithosphere hydration (2004) Tectonics, 23
  • Kurtz, A.C., Kay, S.M., Charrier, R., Farrar, E., Geochronology of Miocene plutons and exhumation history of the El Teniente region, Central Chile (34–35° 8) (1997) Andean Geology, 24, pp. 75-90
  • Le Maitre, R.W., Bateman, P., Dudek, A., Keller, J., Lameyre, J., Le Bas, M., Sabine, P., Streckeisen, A., A Classification of Igneous Rocks and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks (1989), Blackwell Oxford; Leveratto, M., Edad de intrusivos cenozoicos en la Precordillera de San Juan y su implicancia estratigráfica (1976) Revista de la Asociación Geológica Argentina, 31, pp. 53-58
  • Limarino, C.O., Gutiérrez, P.R., Malizia, D., Barreda, V., Page, S., Ostera, H., Linares, E., Edad de las secuencias paleógenas y neógenas de las cordilleras de La Brea y Zancarrón, Valle del Cura, San Juan (1999) Revista de la Asociación Geológica Argentina, 54, pp. 177-181
  • Litvak, V.D., Page, S., Nueva evidencia cronológica en el Valle del Cura, provincia de San Juan, Argentina (2002) Revista de la Asociación Geológica Argentina, 57, pp. 483-486
  • Litvak, V.D., Poma, S., Estratigrafía y facies volcánicas y volcaniclásticas de la Formación Valle del Cura: magmatismo paleógeno en la Cordillera Frontal de San Juan (2005) Revista de la Asociación Geológica Argentina, 60, pp. 402-416
  • Litvak, V.D., Poma, S., Geochemistry of mafic Paleocene volcanic rocks in the Valle del Cura region: implications for the petrogenesis of primary mantle-derived melts over the Pampean flat-slab (2010) Journal of South American Earth Sciences, 29, pp. 705-716
  • Litvak, V.D., Kay, S.M., Mpodozis, M.C., New K/Ar ages on Tertiary Volcanic Rocks in the Valle del Cura, Pampean flat slab segment, Argentina (2005) Actas XVI Congreso Geológico Argentino, 2, pp. 159-164
  • Litvak, V.D., Poma, S., Kay, S.M., Paleogene and Neogene magmatism in the Valle del Cura region: new perspective on the evolution of the Pampean flat slab, San Juan province, Argentina (2007) Journal of South American Earth Sciences, 24, pp. 117-137
  • Llambias, E.J., Sato, A.M., El Batolito de Colangüil (29–31° S) cordillera frontal de Argentina: estructura y marco tectonico (1990) Andean Geology, 17, pp. 89-108
  • Llambías, E.J., Sato, A.M., El batolito de Colangüil: transición entre orogénesis y anorogénesis (1995) Revista de la Asociación Geológica Argentina, 50, pp. 111-131
  • Llambias, E.J., Shaw, S., Sato, A.M., Lower Miocene plutons in the Eastern Cordillera frontal of San Juan (29° 75′ S, 69° 30′ W) (1990), pp. 83-86. , 11° Congreso Geológico Argentino San Juan; Lonsdale, P., Creation of the Cocos and Nazca plates by fission of the Farallon plate (2005) Tectonophysics, 404, pp. 237-264
  • Lucassen, F., Harmon, R., Franz, G., Romer, R.L., Becchio, R., Siebel, W., Lead evolution of the Pre-Mesozoic crust in the Central Andes (18–27°): progressive homogenisation of Pb (2002) Chemical Geology, 186, pp. 183-197
  • Lucassen, F., Wiedicke, M., Franz, G., Complete recycling of a magmatic arc: evidence from chemical and isotopic composition of Quaternary trench sediments in Chile (36°–40°S) (2010) International Journal of Earth Sciences, 99, pp. 687-701
  • Ludwig, K.R., User's Manual for Isoplot 3.7 — A Geochronological Toolkit for Microsoft Excel (2008) Berkeley Geochronology Center Special Publication, 4
  • Macpherson, C.G., Dreher, S.T., Thirlwall, M.F., Adakites without slab melting: high pressure differentiation of island arc magma, Mindanao, the Philippines (2006) Earth and Planetary Science Letters, 243, pp. 581-593
  • Maksaev, V., Moscoso, R., Mpodozis, C., Nasi, C., Las unidades volcánicas y plutónicas del Cenozoico superior en la Alta Cordilera del Norte Chico (29°–31° S): Geologı́a, Alteración hidrotermal y Mineralización (1984) Revista Geológica de Chile, 11, pp. 12-51
  • Martin, M.W., Clavero, R.J., Mpodozis, M.C., Cuitiño, L., Estudio Geológico de la Franja El Indio, Cordillera de Coquimbo (1995), Servicio Nacional de Geologı́a y Minerı́a Santiago; Martin, M.W., Clavero, R.J., Mpodozis, M.C., Eocene to Late Miocene magmatic development of El Indio Belt, 30° S, North-central Chile, Congreso Congreso Geológico Chileno, 8 Actas 1, Antofagasta (1997), pp. 149-153; Martin, M.W., Clavero, R.J., Mpodozis, M.C., Late Paleozoic to Early Jurassic tectonic development of the high Andean Principal Cordillera, El Indio Region, Chile (29–30°S) (1999) Journal of South American Earth Sciences, 12, pp. 33-49
  • McGlashan, N., Brown, L., Kay, S., Crustal thickness in the central Andes from teleseismically recorded depth phase precursors (2008) Geophysical Journal International, 175, pp. 1013-1022
  • Mpodozis, C., Cornejo, P.P., Hoja Pisco Elqui, Region de Coquimbo (1988) Carta Geologica de Chile, , C. Mpodozis J. Davidson S. Rivano Servicio Nacional de Geología y Minería (SERNAGEOMIN) Santiago
  • Mpodozis, C., Kay, S.M., Provincias magmáticas ácidas y evolución tectónica de Gondwana: Andes chilenos (28-31 S) (1990) Andean Geology, 17, pp. 153-180
  • Mpodozis, C., Kay, S.M., Late Paleozoic to Triassic evolution of the Gondwana margin: evidence from Chilean Frontal Cordilleran batholiths (28 S to 31 S) (1992) Geological Society of America Bulletin, 104, pp. 999-1014
  • Nasi, C., Mpodozis, M.C., Cornejo, P., Moscoso, R., Maksaev, V., El Batolito Elqui-Limarí (Paleozoico Superior Triásico): características petrográficas, geoquímicas y significado tectónico (1985) Revista Geológica de Chile, 25, p. 26
  • Nasi, C., Moscoso, R., Maksaev, V., Hoja Guanta, Regiones de Atacama y Coquimbo (1990) Carta Geologica de Chile, , C. Mpodozis J. Davidson S. Rivano Servicio Nacional de Geología y Minería (SERNAGEOMIN) Santiago
  • Nur, A., Ben-Avraham, Z., Volcanic gaps and the consumption of aseismic ridges in South America (1981) Geological Society of America Memoirs, 154, pp. 729-740
  • O'Driscoll, L.J., Richards, M.A., Humphreys, E.D., Nazca–South America interactions and the late Eocene–late Oligocene flat-slab episode in the central Andes (2012) Tectonics, 31
  • Parada, M.A., Granitoid plutonism in central Chile and its geodynamic implications; a review (1990) Plutonism from Antarctica to Alaska, , S.M. Kay C.W. Rapela The Geological Society of America Boulder, Colorado
  • Parada, M.A., Rivano, S., Sepulveda, P., Herve, M., Herve, F., Puig, A., Munizaga, F., Snelling, N., Mesozoic and Cenozoic plutonic development in the Andes of central Chile (30°30′–32°30′S) (1988) Journal of South American Earth Sciences, 1, pp. 249-260
  • Parada, M.A., López-Escobar, L., Oliveros, V., Fuentes, F., Morata, D., Calderón, M., Aguirre, L., Stern, C.R., Andean magmatism (2007) The Geology of Chile, pp. 115-146. , T. Moreno W. Gibbons The Geological Society London
  • Pardo Casas, F., Molnar, P., Relative motion of the Nazca (Farallón) and South America plates since Late Cretaceous time (1987) Tectonics, 6, pp. 233-248
  • Pearce, J.A., Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust (2008) Lithos, 100, pp. 14-48
  • Pilger, R.H., Plate reconstructions, aseismic ridges, and low angle subduction beneath the Andes (1981) Geological Society of America Bulletin, 92, pp. 448-456
  • Pilger, R.H., Cenozoic plate kinematics, subduction and magmatism: South American Andes (1984) Journal of Geological Society London, 141, pp. 793-802
  • Pineda, G., Calderón, M., Geología del área Monte Patria-El Maqui, Región de Coquimbo, Carta Geológica de Chile, Serie Geología Básica (2008), Servicio Nacional de Geología y Minería Santiago; Pineda, G., Emparan, C., Geología del área Vicuña-Pichasca, Región de Coquimbo, Carta Geológica de Chile, Serie Geología Básica (2006), Servicio Nacional de Geología y Minería Santiago; Plank, T., Langmuir, C.H., The chemical composition of subducting sediment and its consequences for the crust and mantle (1998) Chemical Geology, 145, pp. 325-394
  • Poma, S., Limarino, C., Litvak, V., Formación Las Trancas: expresión del arco magmático terciario en el faldeo occidental de la Precordilera de San Juan (2005) Actas, Congreso Geológico Argentino, 16th, La Plata, pp. 331-334. , Asociación Geológica Argentina Buenos Aires
  • Ramos, V.A., Kay, S.M., Page, R., Munizaga, F., La Ignimbrita Vacas Heladas y el cese del volcanismo en el valle del Cura, provincia de San Juan (1989) Revista de la Asociación Geológica Argentina, 44, pp. 336-352
  • Ramos, V.A., Cristallini, E., Pérez, D.J., The Pampean flat-slab of the Central Andes (2002) Journal of South American Earth Sciences, 15, pp. 59-78
  • Ramos, V.A., Zapata, T., Cristallini, E., Introcaso, A., The Andean thrust system—latitudinal variations in structural styles and orogenic shortening (2004) Thrust Tectonics and Hydrocarbon Systems, 82, pp. 30-50
  • Rapela, C., Pankhurst, R., Casquet, C., Baldo, E., Saavedra, J., Galindo, C., Early evolution of the Proto-Andean margin of South America (1998) Geology, 26, pp. 707-710
  • Rapela, C.W., Pankhurst, R.J., Casquet, C., Baldo, E., Galindo, C., Fanning, C.M., Dahlquist, J.M., The Western Sierras Pampeanas: Protracted Grenville-age history (1330–1030 Ma) of intra-oceanic arcs, subduction–accretion at continental-edge and AMCG intraplate magmatism (2010) Journal of South American Earth Sciences, 29, pp. 105-127
  • Reich, M., Parada, M.A., Palacios, C., Dietrich, A., Schultz, F., Lehmann, B., Adakite-like signature of Late Miocene intrusions at the Los Pelambres giant porphyry copper deposit in the Andes of central Chile: metallogenic implications (2003) Mineralium Deposita, 38, pp. 876-885
  • Richards, J.P., Kerrich, R., Special paper: adakite-like rocks: their diverse origins and questionable role in metallogenesis (2007) Economic Geology, 102, pp. 537-576
  • Rodríguez, C., Sellés, D., Dungan, M., Langmuir, C., Leeman, W., Adakitic dacites formed by intracrustal crystal fractionation of water-rich parent magmas at Nevado de Longaví Volcano (36·2°S; Andean Southern Volcanic Zone, Central Chile) (2007) Journal of Petrology, 48, pp. 2033-2061
  • Rooney, T., Franceschi, P., Hall, C., Water-saturated magmas in the Panama Canal region: a precursor to adakite-like magma generation? (2011) Contributions to Mineralogy and Petrology, 161, pp. 373-388
  • Sato, A.M., Llambías, E.J., Basei, M.A.S., Castro, C.E., Three stages in the Late Paleozoic to Triassic magmatism of southwestern Gondwana, and the relationships with the volcanogenic events in coeval basins (2015) Journal of South American Earth Sciences, 63, pp. 48-69
  • Sigmarsson, O., Condomines, M., Morris, J.D., Harmon, R.S., Uranium and 10Be enrichments by fluids in Andean arc magmas (1990) Nature, 346, pp. 163-165
  • Silver, P.G., Russo, R.M., Lithgow-Bertelloni, C., Coupling of South American and African plate motion and plate deformation (1998) Science, 279, pp. 60-63
  • Somoza, R., Updated azca (Farallon)—South America relative motions during the last 40 My: implications for mountain building in the central Andean region (1998) Journal of South American Earth Sciences, 11, pp. 211-215
  • Somoza, R., Ghidella, M.E., Late Cretaceous to recent plate motions in western South America revisited (2012) Earth and Planetary Science Letters, 331-332, pp. 152-163
  • Stern, C.R., Role of subduction erosion in the generation of Andean magmas (1991) Geology, 19, pp. 78-81
  • Stern, C.R., Active Andean volcanism: its geologic and tectonic setting (2004) Revista Geológica de Chile, 31, pp. 161-206
  • Stern, C.R., Kilian, R., Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone (1996) Contributions to Mineralogy and Petrology, 123, pp. 263-281
  • Stern, C.R., Skewes, M.A., Miocene to present magmatic evolution at the northern end of the Andean Southern Volcanic Zone, Central Chile (1995) Andean Geology, 22, pp. 261-272
  • Sun, S.S., McDonough, W.F., Chemical and isotopic systematics of oceanic basalts: implications for mantle compositions and processes (1989) Geological Society, London, Special Publications, 42, pp. 313-345
  • Syracuse, E.M., van Keken, P.E., Abers, G.A., The global range of subduction zone thermal models (2010) Physics of the Earth and Planetary Interiors, 183, pp. 73-90
  • Taylor, S.R., McLennan, S.M., The geochemical evolution of the continental crust (1995) Reviews of Geophysics, 33, pp. 241-265
  • Thomas, W.A., Astini, R.A., Ordovician accretion of the Argentine Precordillera terrane to Gondwana: a review (2003) Journal of South American Earth Sciences, 16, pp. 67-79
  • Thomas, W.A., Astini, R.A., Mueller, P.A., Gehrels, G.E., Wooden, J.L., Transfer of the Argentine Precordillera terrane from Laurentia: constraints from detrital-zircon geochronology (2004) Geology, 32, pp. 965-968
  • Vandervoort, D.S., Jordan, T.E., Zeitler, P.K., Alonso, R.N., Chronology of internal drainage development and uplift, southern Puna plateau, Argentine central Andes (1995) Geology, 23, pp. 145-148
  • Völker, D., Geersen, J., Contreras-Reyes, E., Reichert, C., Sedimentary fill of the Chile Trench (32–46°S): volumetric distribution and causal factors (2013) Journal of the Geological Society, 170, pp. 723-736
  • von Huene, R., Corvalán, J., Flueh, E., Hinz, K., Korstgard, J., Ranero, C., Weinrebe, W., Tectonic control of the subducting Juan Fernández Ridge on the Andean margin near Valparaiso, Chile (1997) Tectonics, 16, pp. 474-488
  • Wetten, A.F., Andesita Cerro Bola: Nueva unidad vinculada al magmatismo mioceno de la Cordillera de Olivares, San Juan, Argentina (30° 35′ S; 69° 30′ O) (2005) Revista de la Asociación Geológica Argentina, 60, pp. 003-008
  • Wilson, B.M., Igneous Petrogenesis A Global Tectonic Approach (1989), Springer; Winocur, D., Litvak, V., Ramos, V., Magmatic and tectonic evolution of the Oligocene Valle del Cura basin, main Andes of Argentina and Chile: evidence for generalized extension (2015) Geological Society, London, Special Publications, 399, pp. 109-130
  • Wörner, G., Moorbath, S., Harmon, R.S., Andean Cenozoic volcanic centers reflect basement isotopic domains (1992) Geology, 20, pp. 1103-1106
  • Yañez, G.A., Ranero, C.R., von Huene, R., Díaz, J., Magnetic anomaly interpretation across the southern central Andes (32°–34°S): the role of the Juan Fernández Ridge in the late Tertiary evolution of the margin (2001) Journal of Geophysical Research, 106, pp. 6325-6345
  • Yañez, G.A., Cembrano, J., Pardo, M., Ranero, C.R., Selles, D., The Challenger–Juan Fernández–Maipo major tectonic transition of the Nazca–Andean subduction system at 33–34°S: geodynamic evidence and implications (2002) Journal of South American Earth Sciences, 15, pp. 28-38

Citas:

---------- APA ----------
Jones, R.E., Kirstein, L.A., Kasemann, S.A., Litvak, V.D., Poma, S., Alonso, R.N. & Hinton, R. (2016) . The role of changing geodynamics in the progressive contamination of Late Cretaceous to Late Miocene arc magmas in the southern Central Andes. Lithos, 262, 169-191.
http://dx.doi.org/10.1016/j.lithos.2016.07.002
---------- CHICAGO ----------
Jones, R.E., Kirstein, L.A., Kasemann, S.A., Litvak, V.D., Poma, S., Alonso, R.N., et al. "The role of changing geodynamics in the progressive contamination of Late Cretaceous to Late Miocene arc magmas in the southern Central Andes" . Lithos 262 (2016) : 169-191.
http://dx.doi.org/10.1016/j.lithos.2016.07.002
---------- MLA ----------
Jones, R.E., Kirstein, L.A., Kasemann, S.A., Litvak, V.D., Poma, S., Alonso, R.N., et al. "The role of changing geodynamics in the progressive contamination of Late Cretaceous to Late Miocene arc magmas in the southern Central Andes" . Lithos, vol. 262, 2016, pp. 169-191.
http://dx.doi.org/10.1016/j.lithos.2016.07.002
---------- VANCOUVER ----------
Jones, R.E., Kirstein, L.A., Kasemann, S.A., Litvak, V.D., Poma, S., Alonso, R.N., et al. The role of changing geodynamics in the progressive contamination of Late Cretaceous to Late Miocene arc magmas in the southern Central Andes. Lithos. 2016;262:169-191.
http://dx.doi.org/10.1016/j.lithos.2016.07.002