Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The present study first addressed the question of whether developmental time (DT) and viability (VT) vary clinally along latitudinal and altitudinal gradients in Drosophila buzzatii, an autochthonous specialist and the generalist invasive Drosophila melanogaster. Coincident and positive altitudinal clines across species and, direct and inverse latitudinal clines were observed for DT in D. melanogaster and D. buzzatii, respectively. Opposing latitudinal and altitudinal clines were detected for VT only in D. melanogaster. The patterns observed along altitudinal gradients prompted us to investigate whether flies living at lowland and highland environments may respond differentially to thermal treatments consisting of regimes of constant and alternating temperatures. Flies reared at higher mean temperature developed faster than at lower mean temperature in both species. By contrast, the response in VT differed greatly between species. Highland D. melanogaster were more viable than lowland regardless the treatment, whereas, in D. buzzatii, highland flies were more viable than lowland in alternating thermal regimes and the reverse was true in treatments of constant temperature. The results obtained suggest that thermal amplitude may be an important factor that should be considered in investigations of thermal adaptation. © 2008 The Linnean Society of London.

Registro:

Documento: Artículo
Título:Clinal variation in developmental time and viability, and the response to thermal treatments in two species of Drosophila
Autor:Folguera, G.; Ceballos, S.; Spezzi, L.; Fanara, J.J.; Hasson, E.
Filiación:Departamento de Ecología, Genética Y Evolución, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, C1428EHA Buenos Aires, Argentina
Palabras clave:Thermal adaptation; Thermal amplitude-clines; adaptation; behavioral response; biological development; brood rearing; cline; fly; invasive species; temperature effect; viability; Drosophila buzzatii; Drosophila melanogaster
Año:2008
Volumen:95
Número:2
Página de inicio:233
Página de fin:245
DOI: http://dx.doi.org/10.1111/j.1095-8312.2008.01053.x
Título revista:Biological Journal of the Linnean Society
Título revista abreviado:Biol. J. Linn. Soc.
ISSN:00244066
CODEN:BJLSB
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_00244066_v95_n2_p233_Folguera.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00244066_v95_n2_p233_Folguera

Referencias:

  • Atkinson, D., Sibly, R.M., Why are organisms usually bigger in colder environments? Making sense of a life history puzzle (1997) Trends in Ecology and Evolution, 12, pp. 235-239
  • Bharathi, N.S., Prasad, N.G., Shakarad, M., Joshi, A., Correlates of sexual dimorphism for dry weight and development time in five species of Drosophila (2004) Journal of Zoology, 264, pp. 87-95
  • Blackburn, T.M., Gaston, K.J., Loder, N., Geographic gradients in body size: A clarification of Bergmann's rule (1999) Diversity and Distributions, 5, pp. 165-174
  • Blanckenhorn, W.U., Altitudinal life history variation in the dung flies Scathophaga stercoraria and Sepsis cympsea (1997) Oecologia, 109, pp. 342-352
  • Blanckenhorn, W.U., Demont, M., Bergmann and Converse Bergmann latitudinal clines in Arthropods: Two ends of a continuum? (2004) Integrative and Comparative Biology, 44, pp. 413-424
  • Blanckenhorn, W.U., Stillwell, R.C., Young, K.A., Fox, C.W., Ashton, K.G., When Rensch meets Bergmann: Does sexual size dimorphism change systematically with latitude (2006) Evolution, 60, pp. 2004-2011
  • Bonner, J.T., Horn, H.S., Selection for size, shape and development timing (1982) Evolution and Development., pp. 259-276. , In: Bonner, J.T., ed. New York, NY: Sringer-Verlag
  • Bubliy, O.A., Loeschcke, V., Variation of life-history and morphometrical traits in Drosophila buzzatii and Drosophila simulans collected along an altitudinal gradient from a Canary island (2005) Biological Journal of the Linnean Society, 84, pp. 119-136
  • Capy, P., Pla, E., David, J.R., Phenotypic and genetic variability of morphometrical traits in natural populations of Drosophila melanogaster and D. simulans. I. Geographic variations (1993) Genetics, Selection, Evolution, 25, pp. 517-536
  • Chippindale, A.K., Alipaz, J.A., Chen, H.W., Rose, M.R., Experimental evolution of accelerated development in Drosophila. 1 Developmental speed and larval survival (1997) Evolution, 51, pp. 1536-1551
  • Chippindale, A.K., Hoang, D.T., Service, P.M., Rose, M.R., The evolution of development in Drosophila melanogaster selected for postponed senescence (1994) Evolution, 48, pp. 1880-1899
  • Chown, S.L., Klok, C.J., Altitudinal body size clines: Latitudinal effects associated with changing seasonality (2003) Ecography, 26, pp. 445-455
  • Cortese, M.D., Norry, F.M., Piccinali, R., Hasson, E., Direct and correlated responses to artificial select on developmental time and wing length in Drosophila buzzatii (2002) Evolution, 56, pp. 2541-2547
  • Crill, W.D., Huey, R.B., Gilchrist, G.W., Within and between generation effects of temperature on the morphology and physiology of Drosophila melanogaster (1996) Evolution, 50, pp. 1205-1218
  • Das, A., Mohanty, S., Parrida, B.B., Abdominal pigmentation and growth temperatura in Indian Drosophila melanogaster: Evidence for genotype-environment interaction (1994) Journal of Biosciences, 19, pp. 267-275
  • David, J.R., Gibert, P., Legout, H., Petavy, G., Capy, P., Moreteau, B., Isofemale lines in Drosophila: An empirical approach to quantitative traits analysis in natural populations (2005) Heredity, 94, pp. 3-12
  • David, J.R., Legout, H., Moreteau, B., Phenotypic plasticity of body size in a temperate population of Drosophila melanogaster: When the temperature-size rule does not apply (2006) Journal of Genetics, 85, pp. 9-23
  • Fanara, J.J., Folguera, G., Iriarte, P.F., Mensch, J., Hasson, E., Genotype by environment interactions and development time in populations of cactophilic Drosophila (2006) Journal of Evolutionary Biology, 19, pp. 900-908
  • Fanara, J.J., Hasson, E., Rodríguez, C., The effect of polymorphic inversions on body size in two natural populations of Drosophila buzzatii from Argentina (1997) Hereditas, 126, pp. 233-237
  • Fernández Iriarte, P., Hasson, E., The role of the use of different host plants in the maintenance of the inversion polymorphism in the cactophilic Drosophila buzzatii (2000) Evolution, 54, pp. 1295-1302
  • Folguera, G., (2007) Analysis of the Effects of the Temperature over Physiological Characters and Life History Traits in Species of Drosophila, , PhD Thesis, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires
  • Gebhardt, M.D., Stearns, S.C., Reaction norms for developmental time and weight at eclosion in Drosophila meracatorum (1988) Journal of Evolutionary Biology, 1, pp. 335-354
  • Gilchrist, A.S., Azevedo, R.B.R., Partridge, L., O'Higgins, P.O., Adaptation and constraint in the evolution of Drosophila melanogaster wing shape (2000) Evolution & Development, 2, pp. 114-124
  • Hallas, R., Schiffer, M., Hoffmann, A.A., Clinal variation in Drosophila serrata for stress resistance and body size (2002) Genetical Research, 79, pp. 141-148
  • Hartl, D.L., Conner, J.K., (2004) A Primer of Ecological Genetics., , Sunderland, MA: Sinnauer Associates
  • Huey, R.B., Berrigan, D., Temperature, demography and ectotherm fitness (2001) The American Naturalist, 158, pp. 204-210
  • Huey, R.B., Gilchrist, G.W., Carlson, M.L., Berrigan, D., Serra, L., Rapid evolution of a geographic cline in size in an introduced fly (2000) Science, 287, pp. 308-309
  • Imasheva, A.G., Bubli, O.A., Lazebny, O.E., Variation in wing length in Eurasian populations of Drosophila melanogaster (1994) Heredity, 72, pp. 508-514
  • James, A.C., Azevedo, R.B.R., Partridge, L., Cellular basis and developmental timing in size cline of Drosophila melanogaster (1995) Genetics, 140, pp. 659-666
  • James, A.C., Partridge, L., Thermal evolution of rate of larval development in Drosophila melanogaster in laboratory and field populations (1995) Journal of Evolutionary Biology, 8, pp. 315-330
  • Kari, J.S., Huey, R.B., Size and seasonal temperature in free-ranging Drosophila subobscura (2000) Journal of Thermal Biology, 25, pp. 267-272
  • Loeschcke, V., Bundgaard, J., Barker, J.S.F., Reaction norms and genetic parameters at different temperatures for thorax and wing size traits in Drosophila aldrichi and D. buzzatii (1999) Journal of Evolutionary Biology, 12, pp. 605-623
  • Loeschcke, V., Krebs, R.A., Dahlgoard, J., Michalak, P., High-temperature stress and the evolution of thermal resistance in Drosophila (1997) Environmental Stress, Adaptation and Evolution., pp. 175-192. , In: Bijlsma, R., Loeschcke, Y., eds. Basel: Birkhäuser
  • Mousseau, T.A., Ectotherms follow the converse Bergmann's rule (1997) Evolution, 51, pp. 630-632
  • Mousseau, T.A., Roff, D.A., Natural selection and the heritability of fitness components (1987) Heredity, 59, pp. 181-198
  • Neat, F., Fowler, K., French, V., Partridge, L., Thermal evolution of growth efficiency in Drosophila melanogaster (1995) Proceedings of the Royal Society of London Series B, Biological Sciences, 260, pp. 73-78
  • Nunney, L., Cheung, W., The effect of temperature on body size and fecundity in female Drosophila melanogaster: Evidence for adaptive plasticity (1997) Evolution, 51, pp. 1529-1535
  • Partridge, L., Fowler, K., Direct and correlated responses to selection for age at reproduction in Drosophila melanogaster (1992) Evolution, 46, pp. 76-91
  • Partridge, L., Langelan, R., Fowler, K., Boszwaan, K.F., French, V., Correlated responses to selection on body size in Drosophila melanogaster (1999) Genetical Research, 74, pp. 43-54
  • Prasad, N.G., Shakarad, M., Gohil, V.M., Sheeba, V., Rajamani, M., Joshi, A., Evolution of reduced preadult viability and larval growth rate in laboratory populations of Drosophila melanogaster selected for shorter development time (2000) Genetical Research, 76, pp. 249-259
  • Pétavy, G., David, J.R., Debat, V., Gibert, P., Moreteau, B., Specific effects of cycling stressful temperatures upon phenotypic and genetic variability of size traits in Drosophila melanogaster (2004) Evolutionary Ecology Research, 6, pp. 873-890
  • Pétavy, G., David, J.R., Gibert, P., Moreteau, B., Viability and rate of development at different temperatures in Drosophila: A comparison of constant and alternating thermal regimes (2001) Journal of Thermal Biology, 26, pp. 29-39
  • Rodríguez, C., Piccinali, R., Levy, E., Hasson, E., Contrasting population genetic structures using allozymes and the inversion polymorphism in Drosophila buzzatii (2000) Journal of Evolutionary Biology, 13, pp. 976-984
  • Roff, D.A., Mousseau, T.A., Quantitative genetics and fitness: Lessons from Drosophila (1987) Heredity, 58, pp. 103-118
  • Santos, M., Céspedes, W., Belanyà, J., Trotta, V.F., Calboli, C.F., Fontdevila, A., Serra, L., Temperature-related genetic changes in laboratory populations of Drosophila subobscura: Evidence against simple climatic-based explanations for latitudinal clines (2005) The American Naturalist, 165, pp. 258-273
  • Schmidt, P.S., Matzkin, L., Hipólito, M., Eanes, W.F., Geographic variation in diapause incidence, life-history traits and climatic adaptation in Drosophila melanogaster (2005) Evolution, 59, pp. 1721-1732
  • Sgrò, C.M., Blows, M.W., The genetic covariance among clinal environments after adaptation to an environmental gradient in Drosophila serrata (2004) Genetics, 167, pp. 1281-1291
  • Stearns, S.C., (1992) The Evolution of Life Histories., , Oxford: Oxford University Press
  • Tylor, B.W., Anderson, C.R., Peckarsky, B.L., Effects of size at metamorphosis on stonely fecundity, longevity and reproductive success (1998) Oecologia, 114, pp. 494-502
  • Van Delden, W., Kamping, A., Changes in relative fitness with temperature among second chromosome arrangements in Drosophila melanogaster (1991) Genetics, 127, pp. 507-514
  • Zwaan, B., Bijlsma, R., Hoekstra, R.F., Artificial selection for developmental time in Drosophila melanogaster in relation to the evolution of aging: Direct and correlated responses (1995) Evolution, 49, pp. 635-648

Citas:

---------- APA ----------
Folguera, G., Ceballos, S., Spezzi, L., Fanara, J.J. & Hasson, E. (2008) . Clinal variation in developmental time and viability, and the response to thermal treatments in two species of Drosophila. Biological Journal of the Linnean Society, 95(2), 233-245.
http://dx.doi.org/10.1111/j.1095-8312.2008.01053.x
---------- CHICAGO ----------
Folguera, G., Ceballos, S., Spezzi, L., Fanara, J.J., Hasson, E. "Clinal variation in developmental time and viability, and the response to thermal treatments in two species of Drosophila" . Biological Journal of the Linnean Society 95, no. 2 (2008) : 233-245.
http://dx.doi.org/10.1111/j.1095-8312.2008.01053.x
---------- MLA ----------
Folguera, G., Ceballos, S., Spezzi, L., Fanara, J.J., Hasson, E. "Clinal variation in developmental time and viability, and the response to thermal treatments in two species of Drosophila" . Biological Journal of the Linnean Society, vol. 95, no. 2, 2008, pp. 233-245.
http://dx.doi.org/10.1111/j.1095-8312.2008.01053.x
---------- VANCOUVER ----------
Folguera, G., Ceballos, S., Spezzi, L., Fanara, J.J., Hasson, E. Clinal variation in developmental time and viability, and the response to thermal treatments in two species of Drosophila. Biol. J. Linn. Soc. 2008;95(2):233-245.
http://dx.doi.org/10.1111/j.1095-8312.2008.01053.x