Abstract:
We characterize the sets of norm one vectors x1,…,xk in a Hilbert space H such that there exists a k-linear symmetric form attaining its norm at (x1,…,xk). We prove that in the bilinear case, any two vectors satisfy this property. However, for k≥3 only collinear vectors satisfy this property in the complex case, while in the real case this is equivalent to x1,…,xk spanning a subspace of dimension at most 2. We use these results to obtain some applications to symmetric multilinear forms, symmetric tensor products and the exposed points of the unit ball of Ls(Hk). © 2018 Elsevier Inc.
Registro:
Documento: |
Artículo
|
Título: | Symmetric multilinear forms on Hilbert spaces: Where do they attain their norm? |
Autor: | Carando, D.; Rodríguez, J.T. |
Filiación: | Departamento de Matemática – Pab I, Facultad de Cs. Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, 1428, Argentina IMAS-CONICET, Argentina Departamento de Matemática, NUCOMPA, Facultad de Cs. Exactas, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, 7000, Argentina CONICET, Argentina
|
Palabras clave: | Hilbert spaces; Multilinear forms; Norm attaining mappings; Hilbert spaces; Tensors; Multilinear forms; Real case; Symmetric tensors; Unit ball; Vector spaces |
Año: | 2019
|
Volumen: | 563
|
Página de inicio: | 178
|
Página de fin: | 192
|
DOI: |
http://dx.doi.org/10.1016/j.laa.2018.10.023 |
Título revista: | Linear Algebra and Its Applications
|
Título revista abreviado: | Linear Algebra Its Appl
|
ISSN: | 00243795
|
CODEN: | LAAPA
|
Registro: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00243795_v563_n_p178_Carando |
Referencias:
- Acosta, M., Denseness of norm attaining mappings (2006) Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, 100 (1-2), pp. 9-30
- Acosta, M., Aron, R., García, D., Maestre, M., The Bishop–Phelps–Bollobás theorem for operators (2008) J. Funct. Anal., 254 (11), pp. 2780-2799
- Aron, R., Choi, Y., Kim, S.K., Lee, H.J., Martín, M., The Bishop–Phelps–Bollobás version of Lindenstrauss properties A and B (2015) Trans. Amer. Math. Soc., 367 (9), pp. 6085-6101
- Banach, S., Uber homogene Polynome in (L2) (1938) Studia Math., 7, pp. 36-44
- Benítez, C., Sarantopoulos, Y., Characterization of real inner product spaces by means of symmetrical bilinear forms (1993) J. Math. Anal. Appl., 180 (1), pp. 207-220
- Bochnak, J., Siciak, J., Polynomials and multilinear mappings in topological vector-spaces (1970) Studia Math., 39, pp. 59-76
- Dantas, S., García, D., Kim, S., Lee, H.J., Maestre, M., On the Bishop–Phelps–Bollobás theorem for multilinear mappings (2017) Linear Algebra Appl., 532, pp. 406-431
- Dineen, S., Complex analysis on infinite-dimensional spaces (1999), Springer-Verlag London; Floret, K., Natural norms on symmetric tensor products of normed spaces (1997) Note Mat., 17, pp. 153-188
- Friedland, S., Lim, L., Nuclear norm of high-order tensors (2018) Math. Comp., 18, pp. 1255-1281
- Grecu, B., Geometry of homogeneous polynomials on two-dimensional real Hilbert spaces (2004) J. Math. Anal. Appl., 293 (2), pp. 578-588
- Grecu, B., Muñoz-Fernández, G., Seoane-Sepúlveda, J.B., The unit ball of the complex P(H3) (2009) Math. Z., 263 (4), pp. 775-785
- Kim, S., Lee, S.H., Exposed 2-homogeneous polynomials on Hilbert spaces (2003) Proc. Amer. Math. Soc., 131 (2), pp. 449-453
- Minc, H., Permanents (1978) Encyclopedia of Mathematics and its Applications, 6. , Addison-Wesley Publishing Co. Reading, Mass
- Muñoz, G., Sarantopoulos, Y., Tonge, A., Complexifications of real Banach spaces, polynomials and multilinear maps (1999) Studia Math., 134 (1), pp. 1-33
- Nie, J., Symmetric tensor nuclear norms (2017) SIAM J. Appl. Algebra Geometry, 1 (1), pp. 599-625
- Pappas, A., Sarantopoulos, Y., Tonge, A., Norm attaining polynomials (2007) Bull. Lond. Math. Soc., 39 (2), pp. 255-264
- Rivlin, T., The Chebyshev Polynomials (1974) Pure and Applied Mathematics, , Wiley-Interscience [John Wiley & Sons] New York
Citas:
---------- APA ----------
Carando, D. & Rodríguez, J.T.
(2019)
. Symmetric multilinear forms on Hilbert spaces: Where do they attain their norm?. Linear Algebra and Its Applications, 563, 178-192.
http://dx.doi.org/10.1016/j.laa.2018.10.023---------- CHICAGO ----------
Carando, D., Rodríguez, J.T.
"Symmetric multilinear forms on Hilbert spaces: Where do they attain their norm?"
. Linear Algebra and Its Applications 563
(2019) : 178-192.
http://dx.doi.org/10.1016/j.laa.2018.10.023---------- MLA ----------
Carando, D., Rodríguez, J.T.
"Symmetric multilinear forms on Hilbert spaces: Where do they attain their norm?"
. Linear Algebra and Its Applications, vol. 563, 2019, pp. 178-192.
http://dx.doi.org/10.1016/j.laa.2018.10.023---------- VANCOUVER ----------
Carando, D., Rodríguez, J.T. Symmetric multilinear forms on Hilbert spaces: Where do they attain their norm?. Linear Algebra Its Appl. 2019;563:178-192.
http://dx.doi.org/10.1016/j.laa.2018.10.023