Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The purpose of this research was to evaluate the influence of particle size distribution, pH (5.0–9.0), concentration (1–15 g/100 g.) and temperature (5–60 °C) on the steady shear flow properties of caseinomacropeptide (CMP) aqueous solutions. These measurements were carried out by using a controlled stress rheometer. Flow curves were satisfactorily fitted by the Herschel-Bulkley model. CMP solutions exhibited Newtonian flow dependence, particularly at pH values 5.0–6.0. Non-Newtonian shear thinning behaviour was observed at pH 7.0–9.0. The concentration dependence on viscosity showed two different regimes of viscosity increase (dilute and concentrated). The overlap concentration was 8 g/100 g. The temperature dependent behaviour of CMP solutions fitted to the Arrhenius model regardless pH and concentration, and the calculated activation energy was 20 kJ/mol. The flow behaviour of CMP is explained in terms of peptide-peptide and peptide-water interactions. Based on these results, CMP molecules would form spontaneously micelles at pH > 4.5 in ultrapure water. © 2018 Elsevier Ltd

Registro:

Documento: Artículo
Título:Flow properties of caseinomacropeptide aqueous solutions: Effect of particle size distribution, concentration, pH and temperature
Autor:Loria, K.G.; Aragón, J.C.; Torregiani, S.M.; Pilosof, A.M.R.; Farías, M.E.
Filiación:Universidad Nacional de Luján, Departamento de Tecnología, Ruta 5 y 7, Luján, Buenos Aires 6700, Argentina
CIC, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, Argentina
PIR, Universidad Nacional de Luján, Departamento de Tecnología, Argentina
Universidad de Buenos Aires, Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Intendente Güiraldes, s/nBuenos Aires 1428, Argentina
ITAPROQ-CONICET, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Intendente Güiraldes, s/nBuenos Aires 1428, Argentina
Palabras clave:Beverage; Caseinomacropeptide; Flow behaviour; Particle size distribution; Rheology; Activation energy; Beverages; Light transmission; Non Newtonian flow; Particle size; Particle size analysis; Peptides; Rheology; Shear thinning; Size distribution; Solutions; Viscosity; Caseinomacropeptide; Concentration dependence; Controlled-stress rheometers; Flow behaviours; Herschel-Bulkley model; Overlap concentration; Temperature dependent; Viscosity increase; Shear flow
Año:2018
Volumen:93
Página de inicio:243
Página de fin:248
DOI: http://dx.doi.org/10.1016/j.lwt.2018.03.050
Título revista:LWT
Título revista abreviado:LWT
ISSN:00236438
CODEN:LBWTA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00236438_v93_n_p243_Loria

Referencias:

  • Ahmed, J., Ramaswamy, H.S., Effect of high-hydrostatic pressure and temperature on rheological characteristics of glycomacropeptide (2003) Journal of Dairy Science, 86, pp. 1535-1540
  • AOAC, Official methods of analysis of association of official analytical chemists international (2005), 18th ed. AOAC USA; Arogundade, L.A., Eromosele, C.O., Eromosele, I.C., Ademuyiwa, O., Rheological properties of African yam bean (Sphenostylis stenocarpa Hochst. Ex A. Rich.) calcium proteinate and isoelectric protein isolates (2011) Lebensmittel-Wissenschaft und -Technologie- Food Science and Technology, 44, pp. 524-534
  • Barreto, P.L.M., Roeder, J., Crespo, J.S., Maciel, G.R., Terenzi, H., Pires, A.T.N., Effect of concentration, temperature and plasticizer content on rheological properties of sodium caseinate and sodium caseinate/sorbitol solutions and glass transition of their films (2003) Food Chemistry, 82, pp. 425-431
  • Brody, E.P., Biological activities of bovine glycomacropeptide (2000) British Journal of Nutrition, 84, pp. 39-46
  • Burgardt, V.C.F., Oliveira, D.F., Evseev, I.G., Coelho, A.R., Haminiuk, C.W.I., Waszczynskyj, N., Influence of concentration and pH in caseinomacropeptide and carboxymethylcellulose interaction (2014) Food Hydrocolloids, 35, pp. 170-180
  • Farías, M.E., Martinez, M.J., Pilosof, A.M.R., Casein glycomacropeptide pH-dependent self-assembly and cold gelation (2010) International Dairy Journal, 20, pp. 79-88
  • Farías, M.E., Pilosof, A.M.R., The influence of acid type on self-assembly, rheological and textural properties of caseinomacropeptide (2016) International Dairy Journal, 55, pp. 17-25
  • Ghaouar, N., Elmissaoui, S., Aschi, A., Gharbi, A., Concentration regimes and denaturation effects on the conformational changes of α-chymotrypsin by viscosity and dynamic light scattering measurements (2010) International Journal of Biological Macromolecules, 47, pp. 425-430
  • Gómez-Arellano, A., Jiménez-Islas, H., Castrejón-González, E.O., Medina-Torres, L., Dendooven, L., Escamilla-Silva, E.M., Rheological behaviour of sesame (Sesamum indicum L.) protein dispersions (2017) Food and Bioproducts Processing, 106, pp. 201-208
  • Huang, J., Zeng, S., Xiong, S., Huang, Q., Steady, dynamic, and creep-recovery rheological properties of myofibrillar protein from grass carp muscle (2016) Food Hydrocolloids, 61, pp. 48-56
  • Kale, M.S., Yadav, M.P., Hicks, K.B., Hanah, K., Concentration and shear rate dependence of solution viscosity for arabinoxylans from different sources (2015) Food Hydrocolloids, 47, pp. 178-183
  • Karataş, M., Arslan, N., Flow behaviours of cellulose and carboxymethyl cellulose from grapefruit peel (2016) Food Hydrocolloids, 58, pp. 235-245
  • Kreuß, M., Strixner, T., Kulozik, U., The effect of glycosylation on the interfacial properties of bovine caseinomacropeptide (2009) Food Hydrocolloids, 23, pp. 1818-1826
  • de Kruif, C.G., Bhatt, H., Anema, S.G., Coker, C., Rheology of caseinate fractions in relation to their water holding capacity (2015) Food Hydrocolloids, 51, pp. 503-511
  • La Clair, C., Ney, D., Leod, E.M., Etzel, M., Purification and use of glycomacropeptide for nutritional management of phenylketonuria (2009) Journal of Food Science, 74, pp. 199-206
  • Li, S., Donner, E., Thompson, M., Zhang, Y., Rempel, C., Liu, Q., Preparation of branched canola protein isolate and effects of molecular architecture on solution flow properties (2017) Lebensmittel-Wissenschaft und -Technologie- Food Science and Technology, 79, pp. 287-293
  • Lim, K., van Calcar, S.C., Nelson, K.L., Gleason, S.T., Ney, D.M., Acceptable low-phenylalanine foods and beverages can be made with glycomacropeptide from cheese whey for individuals with PKU (2007) Molecular Genetics and Metabolism, 92, pp. 176-178
  • Ma, J., Lin, Y., Chen, X., Zhao, B., Zhang, J., Flow behavior, thixotropy and dynamical viscoelasticity of sodium alginate aqueous solutions (2014) Food Hydrocolloids, 38, pp. 119-128
  • Martinez, M.J., Carrera Sánchez, C., Patino, J.M.R., Pilosof, A.M.R., Bulk and interfacial behaviour of caseinoglycomacropeptide (GMP) (2009) Colloids and Surfaces B: Biointerfaces, 71, pp. 230-237
  • Martinez, M.J., Farías, M.E., Pilosof, A.M.R., Casein glycomacropeptide pH-driven self-assembly and gelation upon heating (2011) Food Hydrocolloids, 25, pp. 860-867
  • Mikkelsen, T.L., Frøkiær, H., Topp, C., Bonomi, F., Iametti, S., Picariello, G., Caseinomacropeptide self-association is dependent on whether the peptide is free or restricted in κ-casein (2005) Journal of Dairy Science, 88, pp. 4228-4238
  • Mollé, D., Léonil, J., Quantitative determination of bovine κ-casein macropeptide in dairy products by Liquid chromatography/Electrospray coupled to mass spectrometry (LC-ESI/MS) and Liquid chromatography/Electrospray coupled to tamdem mass spectrometry (LC-ESI/MS/MS) (2005) International Dairy Journal, 15, pp. 419-428
  • Morales, R., Martinez, M.J., Pilosof, A.M.R., Synergistic effect of casein glycomacropeptide on sodium caseinate foaming properties (2017) Colloids and Surfaces B: Biointerfaces, 159, pp. 501-508
  • Ni, X., Chen, W., Xiao, M., Wu, K., Kuang, Y., Corke, H., Physical stability and rheological properties of konjac glucomannan-ethyl cellulose mixed emulsions (2016) International Journal of Biological Macromolecules, 92, pp. 423-430
  • Ono, T., Yada, R., Yutani, K., Nakai, S., Comparison of conformations of κ-casein, para-κ-casein and glycomacropeptide (1987) Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 911, pp. 318-325
  • Pitkowski, A., Durand, D., Nicolai, T., Structure and dynamical mechanical properties of suspensions of sodium caseinate (2008) Journal of Colloid and Interface Science, 326, pp. 96-102
  • Ponton, A., Schott, C., Quemada, D., Rheological behavior of flexible elongated micelles: Temperature effect in an isotropic phase (1998) Colloids and Surfaces A: Physicochemical and Engineering Aspects, 145, pp. 37-45
  • Saito, T., Itoh, T., Variations and distributions of O-glycosidically linked sugar chains in bovine κ-casein A (1992) Journal of Dairy Science, 75, pp. 1768-1774
  • Solverson, P., Murali, S.G., Brinkman, A.S., Nelson, D.W., Clayton, M.K., Yen, C.L., Glycomacropeptide, a low-phenylalanine protein isolated from cheese whey, supports growth and attenuates metabolic stress in the murine model of phenylketonuria (2012) American Journal of Physiology. Endocrinology and Metabolism, 302, p. 31
  • Thomä-Worringer, C., Sørensen, J., López-Fandiño, R., Health effects and technological features of caseinomacropeptide (2006) International Dairy Journal, 16, pp. 1324-1333
  • Villumsen, N.S., Jensen, H.B., Thu Le, T.T., Møller, H.S., Nordvang, R.T., Nielsen, L.R., Self-assembly of caseinomacropeptide as a potential key mechanism in the formation of visible storage induced aggregates in acidic whey protein isolate dispersions (2015) International Dairy Journal, 49, pp. 8-15
  • Zhang, Z., Arrighi, V., Campbell, L., Lonchamp, J., Euston, S.R., Properties of partially denatured whey protein products 2: Solution flow properties (2016) Food Hydrocolloids, 56, pp. 218-226
  • Zhang, Z., Liu, Y., Recent progresses of understanding the viscosity of concentrated protein solutions (2017) Current Opinion in Chemical Engineering, 16, pp. 48-55

Citas:

---------- APA ----------
Loria, K.G., Aragón, J.C., Torregiani, S.M., Pilosof, A.M.R. & Farías, M.E. (2018) . Flow properties of caseinomacropeptide aqueous solutions: Effect of particle size distribution, concentration, pH and temperature. LWT, 93, 243-248.
http://dx.doi.org/10.1016/j.lwt.2018.03.050
---------- CHICAGO ----------
Loria, K.G., Aragón, J.C., Torregiani, S.M., Pilosof, A.M.R., Farías, M.E. "Flow properties of caseinomacropeptide aqueous solutions: Effect of particle size distribution, concentration, pH and temperature" . LWT 93 (2018) : 243-248.
http://dx.doi.org/10.1016/j.lwt.2018.03.050
---------- MLA ----------
Loria, K.G., Aragón, J.C., Torregiani, S.M., Pilosof, A.M.R., Farías, M.E. "Flow properties of caseinomacropeptide aqueous solutions: Effect of particle size distribution, concentration, pH and temperature" . LWT, vol. 93, 2018, pp. 243-248.
http://dx.doi.org/10.1016/j.lwt.2018.03.050
---------- VANCOUVER ----------
Loria, K.G., Aragón, J.C., Torregiani, S.M., Pilosof, A.M.R., Farías, M.E. Flow properties of caseinomacropeptide aqueous solutions: Effect of particle size distribution, concentration, pH and temperature. LWT. 2018;93:243-248.
http://dx.doi.org/10.1016/j.lwt.2018.03.050