Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Thermal stability and browning development of systems containing fungal α-amylase in lactose, raffinose, sucrose, trehalose and polyvinylpyrrolidone (PVP) matrices after heat treatment at 70 °C in a constant relative humidity (RH) environment and in connection with phase transitions were studied. Matrices showed considerable variability in their ability to stabilize α-amylase and in browning development. Amorphous trehalose was the most efficient matrix for preventing non-enzymatic browning and thermal inactivation of the α-amylase. Remaining α-amylase activity decreased as RH% and heating time were increased, the extent of the effect being different for each matrix. Trehalose matrix appeared the most efficient in preventing α-amylase deactivation at '0', 11 and 20% RH. At 42% RH all the matrices showed the lowest degree of enzyme stabilization. The matrices' glassy condition was not enough to ensure enzyme thermal stability; the glassy matrices of trehalose and lactose allowed the retention of 80% enzyme activity after 96 h of heat treatment; the remaining activity in raffinose and PVP matrices was 50% or less. The degree of enzymatic activity protection given by different glassy matrices was related to their molecular weight (which affects molecular packing) and to their associated water content. The degree of browning in each matrix did not follow the same pattern as loss of enzymatic activity. Browning in trehalose and PVP systems was minimal and not accelerated above the glass transition, even in conditions at which trehalose crystallization should occur (42% RH). ©1998 Academic Press Limited.

Registro:

Documento: Artículo
Título:Thermostability and browning development of fungal α-amylase freeze-dried in carbohydrate and PVP matrices
Autor:Terebiznik, M.R.; Buera, M.P.; Pilosof, A.M.R.
Filiación:Departamento de Industrias, Fac. de Cie. Exactas y Naturales, Universidad de Buenos Aires, (1428) Buenos Aires, Argentina
Palabras clave:Browning; Glass transition; Thermostability; Trehalose; α-amylase
Año:1998
Volumen:31
Número:2
Página de inicio:143
Página de fin:149
DOI: http://dx.doi.org/10.1006/fstl.1997.0318
Título revista:LWT - Food Science and Technology
Título revista abreviado:LWT - Food Sci. Technol.
ISSN:00236438
CODEN:LBWTA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00236438_v31_n2_p143_Terebiznik

Referencias:

  • Colaco, C., Sen, S., Thangavelu, M., Pinder, S., Roser, B., Extraordinary stability of enzymes dried in trehalose: Simplified molecular biology (1992) Biotechnology, 10, pp. 1007-1011
  • Palumbo, M.S., Smith, P.W., Strange, E.D., Van Hekken, D.L., Tunick, M.H., Holsinger, V.H., Stability of β-galactosidase from Aspergillus oryazae and Kluyveromyces lactis in dry milk powders (1995) Journal Food Science, 60, pp. 117-119
  • Schebor, C., Buera, M., Chirife, J., Glassy state in relation to the thermal inactivation of the enzyme invertase in amorphous dried matrices of trehalose, maltodextrin and PVP (1996) Journal of Food Engineering, 30, pp. 269-282
  • Cardona, S., Schebor, C., Buera, M., Karel, M., Chirife, J., Thermal stability of invertase in reduced moisture amorphous matrices in relation to glassy state and trehalose crystallization (1997) Journal of Food Science, 62, pp. 105-112
  • Levine, H., Slade, L., Glass transitions in Foods (1992) Physical Chemistry of Foods, pp. 83-222. , SCHWARTZBERG, H. G. AND HARTEL, R. W. (Eds), NY: Marcel Dekker
  • Terasawa, N., Murata, M., Homma, S., Comparison of brown pigments in foods by microbial decolorization (1996) Journal of Food Science, 61, pp. 669-672
  • Karmas, R., (1994) The Effect of Glass Transition on Non-enzymatic Browning in Dehydrated Food Systems, , University of New Jersey, New Brunswick, New Jersey, USA
  • O'Brien, J., Stability of trehalose, sucrose and glucose to non-enzymatic browning in model systems (1996) Journal of Food Science, 61, pp. 679-682
  • Terebiznik, M.R., Buera, M.P., Pilosof, A.M.R., Thermal stability of dehydrated α-amylase in trehalose matrices in relation to its phase transitions (1997) Lebensmittel-Wiissenschaft und-Technologie, 30, pp. 513-518
  • Terebiznik, M.R., Pilosof, A.M.R., Moreno, S., Effective purification of Aspergillus oryzae α-amylase from solid state fermentation cultures using concanavalin A-sepharose (1996) Journal of Food Biochemistry, 17, pp. 341-354
  • Greenspan, L., Humidity fixed points of binary saturated aqueous solutions (1997) Journal of Research of the National Bureau of Standards A. Physics and Chemistry, 81 A (1), pp. 89-96
  • Buera, M.P., Levi, G., Karel, M., Glass transition in poly(vinyl)pyrrolidone: Effect of molecular weight and diluents (1992) Biotechnology Progress, 8, pp. 144-148
  • Saleki-Gerhrdt, A., Stowell, J.G., Byrn, S.R., Zografi, G., Hydration and dehydration of crystalline and amorphous forms of raffinose (1995) Journal of Pharmaceutical Science, 84, pp. 318-323
  • Roos, Y., Karel, M., Phase transitions of mixtures of amorphous polysaccharides and sugars (1991) Biotechnology Progress, 7, pp. 49-53
  • Smith, B.W., Roe, J.H., A photometric method for the determination of α-amylase in blood and urine, with use of the starch-iodine color (1949) Journal of Biological Chemistry, 179, pp. 53-58
  • Parkin, K.L., Environmental effects on enzyme activity (1993) Enzymes in Food Processing, pp. 39-69. , NAGODAWITHANA, T. AND REED, G. (Eds), San Diego, CA: Academic Press Inc
  • Roos, Y., Karel, M., Crystallization of amorphous lactose (1992) Journal of Food Science, 57, pp. 775-777
  • Mazzobre, M.F., Buera, M.P., Chirife, J., Protective role of trehalose on thermal stability of lactose in relation to its glass and crystal forming properties and effect of delaying crystallization (1997) Lebensmittel-wissenschaft und-Technologie, 30, pp. 324-329
  • Le Meste, M., Voilley, A., Colas, B., Influence of water on the mobility of small molecules dispersed in a polymeric system (1991) Water Relationships in Foods, pp. 123-138. , LEVINE, H. AND SLADE, L. (Eds), N.Y.: Plenum Press
  • Frish, H.L., Stern, S.A., Diffusion of small molecules in polymers (1983) CRC Critical Reviews in Solid State and Materials Science, 11, pp. 123-187
  • Hemminga, M.A., Van Den Dries, I.J., Spin label applications to food science (1998) Spin Labelling: the Next Millenium, , BERLINER, L. J. (Ed), Plenum Press in press
  • Roos, Y., Physical state and molecular mobility (1995) Phase Transitions of Foods, pp. 19-46. , TAYLOR, STEVE L. (Ed), San Diego, CA: Academic Press Inc
  • Rossi, S., Buera, M.P., Moreno, S., Chirife, J., Stabilization of restriction enzyme EcoR I dried with trehalose and other selected glass forming solutes (1997) Biotechnology Progress, 13, pp. 609-616
  • Graber, M., Combes, D., Effect of polyols on fungal alpha-amylase thermostability (1989) Enzyme and Microbial Technology, 11, pp. 673-677
  • Roos, Y., Karel, M., Diffential scanning calorimetry study of phase transitions affecting quality of dehydrated materials (1990) Biotechnology Progress, 6, pp. 159-163
  • Karel, M., Anglea, S., Buera, P., Karmas, R., Levi, G., Roos, Y., Stability-related transitions of amorphous foods (1994) Thermochimica Acta, 246, pp. 249-269

Citas:

---------- APA ----------
Terebiznik, M.R., Buera, M.P. & Pilosof, A.M.R. (1998) . Thermostability and browning development of fungal α-amylase freeze-dried in carbohydrate and PVP matrices. LWT - Food Science and Technology, 31(2), 143-149.
http://dx.doi.org/10.1006/fstl.1997.0318
---------- CHICAGO ----------
Terebiznik, M.R., Buera, M.P., Pilosof, A.M.R. "Thermostability and browning development of fungal α-amylase freeze-dried in carbohydrate and PVP matrices" . LWT - Food Science and Technology 31, no. 2 (1998) : 143-149.
http://dx.doi.org/10.1006/fstl.1997.0318
---------- MLA ----------
Terebiznik, M.R., Buera, M.P., Pilosof, A.M.R. "Thermostability and browning development of fungal α-amylase freeze-dried in carbohydrate and PVP matrices" . LWT - Food Science and Technology, vol. 31, no. 2, 1998, pp. 143-149.
http://dx.doi.org/10.1006/fstl.1997.0318
---------- VANCOUVER ----------
Terebiznik, M.R., Buera, M.P., Pilosof, A.M.R. Thermostability and browning development of fungal α-amylase freeze-dried in carbohydrate and PVP matrices. LWT - Food Sci. Technol. 1998;31(2):143-149.
http://dx.doi.org/10.1006/fstl.1997.0318