Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Thermal stability of α-amylase in trehalose matrices of reduced moisture content was studied as affected by phase transitions occurring as a result of increasing temperature at a moisture content of 50 g/kg. Removal of water greatly enhanced thermal stability of α-amylase but when trehalose was present an extraordinary stabilization was achieved. Even in an initially rubbery condition, the protective effect of trehalose could be assessed up to 100 °C. Deactivation kinetics in the range 80-100 °C were related to crystallization of amorphous trehalose which would occur because the system was above the glass transition temperature. According to available water, at most 50% of amorphous trehalose would crystallize. The remaining amorphous trehalose phase would increase its glass transition temperature leading to enhanced enzyme stability. At temperatures close to 90 °C, trehalose dihydrate crystals start melting, releasing water which could promote further trehalose crystallization and enzyme deactivation. Once trehalose crystallizes, the protective effect may be lost since crystalline trehalose forms a separated phase no longer associated with the enzyme. These phase transitions were reflected as breaks in the Arrhenius plots. © 1997 Academic Press Limited.

Registro:

Documento: Artículo
Título:Thermal Stability of Dehydrated α-Amylase in Trehalose Matrices in Relation to its Phase Transitions
Autor:Terebiznik, M.R.; Buera, M.P.; Pilosof, A.M.R.
Filiación:Departamento de Industrias, Fac. de Ciencias Exactas y Naturales, Universidad de Buenos Aires, (1428), Buenos Aires, Argentina
Depto. de Ing. Química, Universidad de Buenos Aires, (1428), Buenos Aires, Argentina
Palabras clave:α-amylase; Phase transitions; Stability; Trehalose; Arrhenius
Año:1997
Volumen:30
Número:5
Página de inicio:513
Página de fin:518
DOI: http://dx.doi.org/10.1006/fstl.1996.0210
Título revista:LWT - Food Science and Technology
Título revista abreviado:LWT - Food Sci. Technol.
ISSN:00236438
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00236438_v30_n5_p513_Terebiznik

Referencias:

  • Parkin, K.L., Environmental effects on enzyme activity (1993) Enzymes in Food Processing, , San Diego: Academic Press, Inc
  • Berny, J.F., Hennebert, G.L., Viability and stability of yeast cells and filamentous fungus spores during freeze-drying: Effects of protectants and cooling rates (1991) Mycologia, 83, pp. 805-815
  • Leslie, S.B., Teter, S.A., Crowe, L.M., Crowe, J.H., Trehalose lowers membrane phase transitions in dry yeast cells (1995) Biochimica et Biophysica Acta, 1192, pp. 7-13
  • Tan, C.S., Van Ingen, C.W., Talsma, H., Van Mileternburg, J.C., Steffensen, C.L., Vlug, I.J.A., Stalpers, J.A., Freeze-drying of fungi: Influence of composition and glass transition temperature of the protectant (1995) Cryobiology, 32, pp. 60-67
  • Hottiger, T., De Virgilio, C., Hall, M.N., Boller, T., Wiemken, A., The role of trehalose synthesis for the acquisition of thermotolerance in yeast II. Physiological concentrations of trehalose increase the thermal stability of proteinsin vitro (1994) European Journal of Biochemistry, 219, pp. 187-193
  • Colaço, C., Sen, S., Thangavelu, M., Pinder, S., Roser, B., Extraordinary stability of enzymes dried in trehalose: Simplified molecular biology (1992) Bio/technology, 10, pp. 1007-1011
  • Crowe, J.H., Hoekstra, F.A., Crowe, L.M., Membrane phase transitions are responsible for imbibitional damage in dry pollen (1989) Proceeding of the Nationale Academy of Science, 86, pp. 520-523
  • Cardona, S., Schebor, C., Buera, M.P., Karel, M., Chirife, J., Thermal stability of invertase in reduced-moisture amorphous matrices in relation to glassy stage and role of trehalose crystallization (1997) Journal of Food Science, 62, pp. 105-112
  • Roos, Y., Water activity and physical state effects on amorphous food stability (1993) Journal of Food Processing and Preservation, 16, pp. 433-447
  • White, G.W., Cakebread, S.H., The glassy state in certain sugar containing food products (1996) Journal of Food Technology, 1, pp. 73-78
  • Slade, L., Levine, H., Beyond water activity: Recent advances based on an alternative approach to the assessment of the food quality and safety (1991) CRC Critical Reviews in Food Science and Nutrition, 30, pp. 115-360
  • Karmas, R., Buera, M.P., Karel, M., Effect of glass transitions on rates of non-enzymatic browning in food systems (1992) Journal of Agriculture and Food Chemistry, 40, pp. 873-879
  • Berlin, E., Anderson, B.A., Pallansch, M.J., Effect of temperature on water vapor sorption by dried milk powders (1970) Journal of Dairy Science, 53, pp. 146-149
  • Saltmarch, M., Vagnini-Ferrari, M., Labuza, T.P., Theoretical basis and application of kinetics to browning in spray-dried sweet whey powders (1981) Progress in Food Nutrition Science, 5, pp. 331-334
  • Shimada, Y., Roos, Y.H., Karel, M., Oxidation of methyl-linoleate encapsulated in amorphous lactose based food model (1991) Journal of Agriculture and Food Chemistry, 39, pp. 637-641
  • Roos, Y., Karel, M., Crystallization of amorphous lactose (1992) Journal of Food Science, 57, pp. 775-777
  • Mazzobre, M.F., Buera, M.P., Chirife, J., Protective role of trehalose on thermal stability of lactase in relation to its glass and crystal forming properties and effect of delaying crystallization (1997) Lebensmittel-Wissenschaft Und-technology, 30, pp. 324-329
  • Terebiznik, M., Pilosof, A.M.R., Moreno, S., Effective purification ofAspergillus oryzae (1996) Journal of Food Biochemistry, 17, pp. 341-354
  • Smith, B.W., Roe, J.H., A photometric method for the determination of α-amylase in blood and urine, with use of the starch-Iodine color (1949) Journal of Biological Chemistry, 179, pp. 53-58
  • Roos, Y., Karel, M., Plasticizing effect of water on thermal behavior and crystallization of amorphous food models (1991) Journal of Food Science, 56, pp. 38-44
  • Bombara, N., Pilosof, A.M.R., Añon, M.C., Thermal stability of a neutral protease ofAspergillus oryzae (1994) Journal of Food Biochemistry, 18, pp. 31-41
  • Fukada, H., Takashi, K., Differential scanning calorimetric study of the thermal unfolding of Taka-amylase A fromAspergillus oryzae (1987) Biochemistry, 26, pp. 4063-4068
  • Carpenter, J.F., Crowe, L.M., Crowe, J.H., Stabilization of phosphofructokinase with sugars during freeze-drying: Characterization of enhanced protection in the presence of divalent cations (1987) Biochemical and Biophysical Acta, 923, pp. 109-115
  • Carpenter, J.F., Martin, B., Crowe, L.M., Crowe, J.H., Stabilization of phosphofructokinase during air-drying with sugars and sugar/transition metal mixtures (1987) Cryobiology, 24, pp. 455-464
  • Schebor, C., Buera, M.P., Chirife, J., Glassy state in relation to the thermal inactivation of enzyme invertase in amorphous dried matrices of trehalose, maltodextrin and PVP (1996) Journal of Food Engineering, 30. , 269-2??
  • Roser, B.J., Trehalose drying: A novel replacement for freeze-drying (1991) Biopharmacy, 5, pp. 44-53
  • Karmas, R., (1994) The Effect of Glass Transition on Non-enzymatic Browning in Dehydrated Food Systems, , University of New Jersey, New Brunswick, New Jersey, USA
  • Roos, Y., Karel, M., Phase transitions of mixtures of amorphous polysaccharides and sugars (1991) Biotechnology Progress, 7, pp. 49-53
  • Jeffrey, G.A., Nanni, R., The crystal structure of anhydrous α-α trehalose at -150 °c (1985) Carbohydrate Research, 137, pp. 21-30
  • Labuza, T.P., An integrated approach to food chemistry: Illustrative cases (1985) Food Chemistry, , O.R. Fennema. New York: Marcel Dekker
  • Labuza, T.P., Nutrient losses during drying and storage of dehydrated foods (1972) Critical Reviews in Food Technology, 3, pp. 217-220

Citas:

---------- APA ----------
Terebiznik, M.R., Buera, M.P. & Pilosof, A.M.R. (1997) . Thermal Stability of Dehydrated α-Amylase in Trehalose Matrices in Relation to its Phase Transitions. LWT - Food Science and Technology, 30(5), 513-518.
http://dx.doi.org/10.1006/fstl.1996.0210
---------- CHICAGO ----------
Terebiznik, M.R., Buera, M.P., Pilosof, A.M.R. "Thermal Stability of Dehydrated α-Amylase in Trehalose Matrices in Relation to its Phase Transitions" . LWT - Food Science and Technology 30, no. 5 (1997) : 513-518.
http://dx.doi.org/10.1006/fstl.1996.0210
---------- MLA ----------
Terebiznik, M.R., Buera, M.P., Pilosof, A.M.R. "Thermal Stability of Dehydrated α-Amylase in Trehalose Matrices in Relation to its Phase Transitions" . LWT - Food Science and Technology, vol. 30, no. 5, 1997, pp. 513-518.
http://dx.doi.org/10.1006/fstl.1996.0210
---------- VANCOUVER ----------
Terebiznik, M.R., Buera, M.P., Pilosof, A.M.R. Thermal Stability of Dehydrated α-Amylase in Trehalose Matrices in Relation to its Phase Transitions. LWT - Food Sci. Technol. 1997;30(5):513-518.
http://dx.doi.org/10.1006/fstl.1996.0210