Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Birnaviruses are unconventional members of the group of doublestranded RNA (dsRNA) viruses that are characterized by the lack of a transcriptionally active inner core. Instead, the birnaviral particles organize their genome in ribonucleoprotein complexes (RNPs) composed by dsRNA segments, the dsRNA-binding VP3 protein, and the virally encoded RNA-dependent RNA polymerase (RdRp). This and other structural features suggest that birnaviruses may follow a completely different replication program from that followed by members of the Reoviridae family, supporting the hypothesis that birnaviruses are the evolutionary link between single-stranded positive RNA (+ssRNA) and dsRNA viruses. Here we demonstrate that infectious bursal disease virus (IBDV), a prototypical member of the Birnaviridae family, hijacks endosomal membranes of infected cells through the interaction of a viral protein, VP3, with the phospholipids on the cytosolic leaflet of these compartments for replication. Employing a mutagenesis approach, we demonstrated that VP3 domain PATCH 2 (P2) mediates the association of VP3 with the endosomal membranes. To determine the role of VP3 P2 in the context of the virus replication cycle, we used avian cells stably overexpressing VP3 P2 for IBDV infection. Importantly, the intra- and extracellular virus yields, as well as the intracellular levels of VP2 viral capsid protein, were significantly diminished in cells stably overexpressing VP3 P2. Together, our results indicate that the association of VP3 with endosomes has a relevant role in the IBDV replication cycle. This report provides direct experimental evidence for membranous compartments such as endosomes being required by a dsRNA virus for its replication. The results also support the previously proposed role of birnaviruses as an evolutionary link between +ssRNA and dsRNA viruses. © 2018 American Society for Microbiology.

Registro:

Documento: Artículo
Título:Infectious bursal disease virus hijacks endosomal membranes as the scaffolding structure for viral replication
Autor:Gimenez, M.C.; Zanetti, F.A.; Terebiznik, M.R.; Colombo, M.I.; Delgui, L.R.
Filiación:IHEM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Médicas, Mendoza, Argentina
Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
Facultad de Ciencias Veterinarias y Ambientales, Universidad Juan Agustín Maza, Mendoza, Argentina
Instituto de Ciencia y Tecnología Dr. Cesar Milstein, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
Department of Biological Sciences, University of Toronto at Scarborough, Scarborough, Canada
Department of Cell and System Biology, University of Toronto at Scarborough, Scarborough, Canada
Palabras clave:+ssRNA; Birnavirus; Endosomes; Gumboro disease; Virus replication complex; phospholipid; protein VP2; protein VP3; animal cell; Article; cell membrane; controlled study; double-stranded RNA virus; endosome; human; human cell; infectious bursal disease; infectious bursal disease virus; nonhuman; priority journal; protein domain; protein lipid interaction; single-stranded RNA virus; virus cell interaction; virus replication
Año:2018
Volumen:92
Número:11
DOI: http://dx.doi.org/10.1128/JVI.01964-17
Título revista:Journal of Virology
Título revista abreviado:J. Virol.
ISSN:0022538X
CODEN:JOVIA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0022538X_v92_n11_p_Gimenez

Referencias:

  • Delgui, L.R., Colombo, M.I., A novel mechanism underlying the innate immune response induction upon viral-dependent replication of host cell mRNA: a mistake of +sRNA viruses' replicases (2017) Front Cell Infect Microbiol, 7, p. 5. , https://doi.org/10.3389/fcimb.2017.00005
  • Pesavento, J.B., Crawford, S.E., Estes, M.K., Prasad, B.V.V., Rotavirus proteins: structure and assembly (2006) Curr Top Microbiol Immunol, 309, pp. 189-219
  • Estes, M.G.H., Rotaviruses (2013) Fields virology, pp. 1347-1401. , In Fields BN, Knipe DM, Howley PM, Cohen JI, Griffin DE, Lamb RA, Martin MA, Racaniello VR, Roizman B (ed), 6th ed. Lippincott Williams & Wilkins, Philadelphia, PA
  • Mertens, P.P., Diprose, J., The bluetongue virus core: a nano-scale transcription machine (2004) Virus Res, 101, pp. 29-43. , https://doi.org/10.1016/j.virusres.2003.12.004
  • McDonald, S.M., Patton, J.T., Rotavirus VP2 core shell regions critical for viral polymerase activation (2011) J Virol, 85, pp. 3095-3105. , https://doi.org/10.1128/JVI.02360-10
  • Giambrone, J.J., Donahoe, J.P., Dawe, D.L., Eidson, C.S., Specific suppression of the bursa-dependent immune system of chicks with infectious bursal disease virus (1977) Am J Vet Res, 38, pp. 581-583
  • Cosgrove, A.S., An apparently new disease of chickens: avian nephrosis (1962) Avian Dis, 6, p. 385. , https://doi.org/10.2307/1587909
  • Coulibaly, F., Chevalier, C., Gutsche, I., Pous, J., Navaza, J., Bressanelli, S., Delmas, B., Rey, F.A., The birnavirus crystal structure reveals structural relationships among icosahedral viruses (2005) Cell, 120, pp. 761-772. , https://doi.org/10.1016/j.cell.2005.01.009
  • Böttcher, B., Kiselev, N.A., Stel'Mashchuk, V.Y., Perevozchikova, N.A., Borisov, A.V., Crowther, R.A., Three-dimensional structure of infectious bursal disease virus determined by electron cryomicroscopy (1997) J Virol, 71, pp. 325-330
  • Gimenez, M.C., Rodríguez Aguirre, J.F., Colombo, M.I., Delgui, L.R., Infectious bursal disease virus uptake involves macropinocytosis and trafficking to early endosomes in a Rab5-dependent manner (2015) Cell Microbiol, 17, pp. 988-1007. , https://doi.org/10.1111/cmi.12415
  • Delgui, L.R., Rodriguez, J.F., Colombo, M.I., The endosomal pathway and the Golgi complex are involved in the infectious bursal disease virus life cycle (2013) J Virol, 87, pp. 8993-9007. , https://doi.org/10.1128/JVI.03152-12
  • Méndez, F., Romero, N., Cubas, L.L., Delgui, L.R., Rodríguez, D., Rodríguez, J.F., Non-lytic egression of infectious bursal disease virus (IBDV) particles from infected cells (2017) PLoS One, 12. , https://doi.org/10.1371/journal.pone.0170080
  • Lejal, N., Da Costa, B., Huet, J.C., Delmas, B., Role of Ser-652 and Lys-692 in the protease activity of infectious bursal disease virus VP4 and identification of its substrate cleavage sites (2000) J Gen Virol, 81, pp. 983-992. , https://doi.org/10.1099/0022-1317-81-4-983
  • Irigoyen, N., Castón, J.R., Rodríguez, J.F., Host proteolytic activity is necessary for infectious bursal disease virus capsid protein assembly (2012) J Biol Chem, 287, pp. 24473-24482. , https://doi.org/10.1074/jbc.M112.356113
  • Saugar, I., Luque, D., Oña, A., Rodríguez, J.F., Carrascosa, J.L., Trus, B.L., Castón, J.R., Structural polymorphism of the major capsid protein of a doublestranded RNA virus: an amphipathic α helix as a molecular switch (2005) Structure, 13, pp. 1007-1017. , https://doi.org/10.1016/j.str.2005.04.012
  • Da Costa, B., Chevalier, C., Henry, C., Huet, J.-C., Petit, S., Lepault, J., Boot, H., Delmas, B., The capsid of infectious bursal disease virus contains several small peptides arising from the maturation process of pVP2 (2002) J Virol, 76, pp. 2393-2402. , https://doi.org/10.1128/jvi.76.5.2393-2402.2002
  • Galloux, M., Libersou, S., Morellet, N., Bouaziz, S., Da Costa, B., Ouldali, M., Lepault, J., Delmas, B., Infectious bursal disease virus, a nonenveloped virus, possesses a capsid-associated peptide that deforms and perforates biological membranes (2007) J Biol Chem, 282, pp. 20774-20784. , https://doi.org/10.1074/jbc.M701048200
  • Luque, D., Rivas, G., Alfonso, C., Carrascosa, J.L., Rodriguez, J.F., Caston, J.R., Infectious bursal disease virus is an icosahedral polyploid dsRNA virus (2009) Proc Natl Acad Sci U S A, 106, pp. 2148-2152. , https://doi.org/10.1073/pnas.0808498106
  • von Einem, U.I., Gorbalenya, A.E., Schirrmeier, H., Behrens, S.-E., Letzel, T., Mundt, E., VP1 of infectious bursal disease virus is an RNAdependent RNA polymerase (2004) J Gen Virol, 85, pp. 2221-2229. , https://doi.org/10.1099/vir.0.19772-0
  • Dalton, R.M., Rodríguez, J.F., Rescue of infectious birnavirus from recombinant ribonucleoprotein complexes (2014) PLoS One, 9. , https://doi.org/10.1371/journal.pone.0087790
  • Ahlquist, P., Virus evolution: fitting lifestyles to a T (2005) Curr Biol, 15, pp. R465-R467. , https://doi.org/10.1016/j.cub.2005.06.016
  • Schwartz, M., Chen, J., Janda, M., Sullivan, M., den Boon, J., Ahlquist, P., A positive-strand RNA virus replication complex parallels form and function of retrovirus capsids (2002) Mol Cell, 9, pp. 505-514. , https://doi.org/10.1016/S1097-2765(02)00474-4
  • Casañas, A., Navarro, A., Ferrer-Orta, C., González, D., Rodríguez, J.F., Verdaguer, N., Structural insights into the multifunctional protein VP3 of birnaviruses (2008) Structure, 16, pp. 29-37. , https://doi.org/10.1016/j.str.2007.10.023
  • Maraver, A., Oña, A., Abaitua, F., González, D., Clemente, R., Ruiz-Díaz, J.A., Castón, J.R., Rodriguez, J.F., The oligomerization domain of VP3, the scaffolding protein of infectious bursal disease virus, plays a critical role in capsid assembly (2003) J Virol, 77, pp. 6438-6449. , https://doi.org/10.1128/JVI.77.11.6438-6449.2003
  • Saugar, I., Irigoyen, N., Luque, D., Carrascosa, J.L., Rodríguez, J.F., Castón, J.R., Electrostatic interactions between capsid and scaffolding proteins mediate the structural polymorphism of a double-stranded RNA virus (2010) J Biol Chem, 285, pp. 3643-3650. , https://doi.org/10.1074/jbc.M109.075994
  • Oña, A., Luque, D., Abaitua, F., Maraver, A., Castón, J.R., Rodríguez, J.F., The C-terminal domain of the pVP2 precursor is essential for the interaction between VP2 and VP3, the capsid polypeptides of infectious bursal disease virus (2004) Virology, 322, pp. 135-142. , https://doi.org/10.1016/j.virol.2004.01.025
  • Garriga, D., Navarro, A., Querol-Audi, J., Abaitua, F., Rodriguez, J.F., Verdaguer, N., Activation mechanism of a noncanonical RNA-dependent RNA polymerase (2007) Proc Natl Acad Sci U S A, 104, pp. 20540-20545. , https://doi.org/10.1073/pnas.0704447104
  • Lombardo, E., Maraver, A., Castón, J.R., Rivera, J., Fernández-Arias, A., Serrano, A., Carrascosa, J.L., Rodriguez, J.F., VP1, the putative RNA-dependent RNA polymerase of infectious bursal disease virus, forms complexes with the capsid protein VP3, leading to efficient encapsidation into virus-like particles (1999) J Virol, 73, pp. 6973-6983
  • van Cleef, K.W.R., van Mierlo, J.T., Miesen, P., Overheul, G.J., Fros, J.J., Schuster, S., Marklewitz, M., van Rij, R.P., Mosquito and Drosophila entomobirnaviruses suppress dsRNA-and siRNA-induced RNAi (2014) Nucleic Acids Res, 42, pp. 8732-8744. , https://doi.org/10.1093/nar/gku528
  • Valli, A., Busnadiego, I., Maliogka, V., Ferrero, D., Castón, J.R., Rodríguez, J.F., García, J.A., The VP3 factor from viruses of Birnaviridae family suppresses RNA silencing by binding both long and small RNA duplexes (2012) PLoS One, 7. , https://doi.org/10.1371/journal.pone.0045957
  • Chevalier, C., Galloux, M., Pous, J., Henry, C., Denis, J., Da Costa, B., Navaza, J., Delmas, B., Structural peptides of a nonenveloped virus are involved in assembly and membrane translocation (2005) J Virol, 79, pp. 12253-12263. , https://doi.org/10.1128/JVI.79.19.12253-12263.2005
  • Marshansky, V., Futai, M., The V-type H+-ATPase in vesicular trafficking: targeting, regulation and function (2008) Curr Opin Cell Biol, 20, pp. 415-426. , https://doi.org/10.1016/j.ceb.2008.03.015
  • Yoshimori, T., Yamamoto, A., Moriyamas, Y., Futais, M., Tashiroq, Y., Bafilomycin AI, a specific inhibitor of vacuolar-type H+-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells (1991) J Biol Chem, 266, pp. 17707-17712
  • Gómez-Sánchez, R., Pizarro-Estrella, E., Yakhine-Diop, S.M.S., Rodríguez-Arribas, M., Bravo-San Pedro, J.M., Fuentes, J.M., González-Polo, R.A., Routine Western blot to check autophagic flux: cautions and recommendations (2015) Anal Biochem, 477, pp. 13-20. , https://doi.org/10.1016/j.ab.2015.02.020
  • Jiang, P., Mizushima, N., LC3-and p62-based biochemical methods for the analysis of autophagy progression in mammalian cells (2015) Methods, 75, pp. 13-18. , https://doi.org/10.1016/j.ymeth.2014.11.021
  • Mizushima, N., Yoshimori, T., How to interpret LC3 immunoblotting (2007) Autophagy, 3, pp. 542-545. , https://doi.org/10.4161/auto.4600
  • Vitelli, R., Santillo, M., Lattero, D., Chiariello, M., Bifulco, M., Bruni, C.B., Bucci, C., Role of the small GTPase Rab7 in the late endocytic pathway (1997) J Biol Chem, 272, pp. 4391-4397. , https://doi.org/10.1074/jbc.272.7.4391
  • Mukhopadhyay, A., Funato, K., Stahl, P.D., Rab7 regulates transport from early to late endocytic compartments in Xenopus oocytes (1997) J Biol Chem, 272, pp. 13055-13059. , https://doi.org/10.1074/jbc.272.20.13055
  • Gorvel, J.P., Chavrier, P., Zerial, M., Gruenberg, J., rab5 controls early endosome fusion in vitro (1991) Cell, 64, pp. 915-925. , https://doi.org/10.1016/0092-8674(91)90316-Q
  • Stenmark, H., Parton, R.G., Steele-Mortimer, O., Lütcke, A., Gruenberg, J., Zerial, M., Inhibition of rab5 GTPase activity stimulates membrane fusion in endocytosis (1994) EMBO J, 13, pp. 1287-1296
  • Matevossian, A., Resh, M.D., Membrane topology of hedgehog acyltransferase (2015) J Biol Chem, 290, pp. 2235-2243. , https://doi.org/10.1074/jbc.M114.625764
  • DiGiuseppe, S., Keiffer, T.R., Bienkowska-Haba, M., Luszczek, W., Guion, L.G.M., Müller, M., Sapp, M., Topography of the human papillomavirus minor capsid protein L2 during vesicular trafficking of infectious entry (2015) J Virol, 89, pp. 10442-10452. , https://doi.org/10.1128/JVI.01588-15
  • Choe, S.S., Kirkegaard, K., Intracellular topology and epitope shielding of poliovirus 3A protein (2004) J Virol, 78, pp. 5973-5982. , https://doi.org/10.1128/JVI.78.11.5973-5982.2004
  • Krawczyk, E., Suprynowicz, F.A., Sudarshan, S.R., Schlegel, R., Membrane orientation of the human papillomavirus type 16 E5 oncoprotein (2010) J Virol, 84, pp. 1696-1703. , https://doi.org/10.1128/JVI.01968-09
  • Labay, V., Weichert, R.M., Makishima, T., Griffith, A.J., Topology of transmembrane channel-like gene 1 protein (2010) Biochemistry, 49, pp. 8592-8598. , https://doi.org/10.1021/bi1004377
  • Braakman, I., Hebert, D.N., Protein folding in the endoplasmic reticulum (2013) Cold Spring Harb Perspect Biol, 5. , https://doi.org/10.1101/cshperspect.a013201
  • Joyce, C.W., Shelness, G.S., Davis, M.A., Lee, R.G., Skinner, K., Anderson, R.A., Rudel, L.L., ACAT1 and ACAT2 membrane topology segregates a serine residue essential for activity to opposite sides of the endoplasmic reticulum membrane (2000) Mol Biol Cell, 11, pp. 3675-3687. , https://doi.org/10.1091/mbc.11.11.3675
  • Rodríguez, J.M., García-Escudero, R., Salas, M.L., Andrés, G., African swine fever virus structural protein p54 is essential for the recruitment of envelope precursors to assembly sites (2004) J Virol, 78, pp. 4299-4313. , https://doi.org/10.1128/JVI.78.8.4299-4313.2004
  • Stevanovic, A., Thiele, C., Monotopic topology is required for lipid droplet targeting of ancient ubiquitous protein 1 (2013) J Lipid Res, 54, pp. 503-513. , https://doi.org/10.1194/jlr.M033852
  • Nakamura, N., Rabouille, C., Watson, R., Nilsson, T., Hui, N., Slusarewicz, P., Kreis, T.E., Warren, G., Characterization of a cis-Golgi matrix protein, GM130 (1995) J Cell Biol, 131, pp. 1715-1726. , https://doi.org/10.1083/jcb.131.6.1715
  • Gao, Y.S., Alvarez, C., Nelson, D.S., Sztul, E., Molecular cloning, characterization, and dynamics of rat formiminotransferase cyclodeaminase, a Golgi-associated 58-kDa protein (1998) J Biol Chem, 273, pp. 33825-33834. , https://doi.org/10.1074/jbc.273.50.33825
  • Mertens, J., Casado, S., Mata, C.P., Hernando-Pérez, M., de Pablo, P.J., Carrascosa, J.L., Castón, J.R., A protein with simultaneous capsid scaffolding and dsRNA-binding activities enhances the birnavirus capsid mechanical stability (2015) Sci Rep, 5, p. 13486. , https://doi.org/10.1038/srep13486
  • Goldenberg, N.M., Steinberg, B.E., Surface charge: a key determinant of protein localization and function (2010) Cancer Res, 70, pp. 1277-1280. , https://doi.org/10.1158/0008-5472.CAN-09-2905
  • Waterhouse, A.M., Procter, J.B., Martin, D.M.A., Clamp, M., Barton, G.J., Jalview version 2-a multiple sequence alignment editor and analysis workbench (2009) Bioinformatics, 25, pp. 1189-1191. , https://doi.org/10.1093/bioinformatics/btp033
  • Sharma, M., Naslavsky, N., Caplan, S., A role for EHD4 in the regulation of early endosomal transport (2008) Traffic, 9, pp. 995-1018. , https://doi.org/10.1111/j.1600-0854.2008.00732.x
  • Tristan, C., Shahani, N., Sedlak, T.W., Sawa, A., The diverse functions of GAPDH: views from different subcellular compartments (2011) Cell Signal, 23, pp. 317-323. , https://doi.org/10.1016/j.cellsig.2010.08.003
  • Delgui, L., González, D., Rodríguez, J.F., Infectious bursal disease virus persistently infects bursal B-lymphoid DT40 cells (2009) J Gen Virol, 90, pp. 1148-1152. , https://doi.org/10.1099/vir.0.008870-0
  • Chavrier, P., Parton, R.G., Hauri, H.P., Simons, K., Zerial, M., Localization of low molecular weight GTP binding proteins to exocytic and endocytic compartments (1990) Cell, 62, pp. 317-329. , https://doi.org/10.1016/0092-8674(90)90369-P
  • Mu, F.T., Callaghan, J.M., Steele-Mortimer, O., Stenmark, H., Parton, R.G., Campbell, P.L., McCluskey, J., Toh, B.H., EEA1, an early endosome-associated protein: EEA1 is a conserved α-helical peripheral membrane protein flanked by cysteine "fingers" and contains a calmodulin-binding IQ motif (1995) J Biol Chem, 270, pp. 13503-13511. , https://doi.org/10.1074/jbc.270.22.13503
  • Diaz-Salinas, M.A., Silva-Ayala, D., Lopez, S., Arias, C.F., Rotaviruses reach late endosomes and require the cation-dependent mannose-6-phosphate receptor and the activity of cathepsin proteases to enter the cell (2014) J Virol, 88, pp. 4389-4402. , https://doi.org/10.1128/JVI.03457-13
  • Stenmark, H., Rab GTPases as coordinators of vesicle traffic (2009) Nat Rev Mol Cell Biol, 10, pp. 513-525. , https://doi.org/10.1038/nrm2728
  • White, J., Matlin, K., Helenius, A., Cell fusion by Semliki Forest, influenza, and vesicular stomatitis viruses (1981) J Cell Biol, 89, pp. 674-679. , https://doi.org/10.1083/jcb.89.3.674
  • Garriga, D., Querol-Audí, J., Abaitua, F., Saugar, I., Pous, J., Verdaguer, N., Castón, J.R., Rodriguez, J.F., The 2.6-angstrom structure of infectious bursal disease virus-derived TA1 particles reveals new stabilizing elements of the virus capsid (2006) J Virol, 80, pp. 6895-6905. , https://doi.org/10.1128/JVI.00368-06
  • De Craene, J.-O., Bertazzi, D.L., Bär, S., Friant, S., phosphoinositides, major actors in membrane trafficking and lipid signaling pathways (2017) Int J Mol Sci, 18, p. 634. , https://doi.org/10.3390/ijms18030634
  • Di Paolo, G., De Camilli, P., Phosphoinositides in cell regulation and membrane dynamics (2006) Nature, 443, pp. 651-657. , https://doi.org/10.1038/nature05185
  • McLaughlin, S., The electrostatic properties of membranes (1989) Annu Rev Biophys Biophys Chem, 18, pp. 113-136. , https://doi.org/10.1146/annurev.bb.18.060189.000553
  • Olivotto, M., Arcangeli, A., Carlá, M., Wanke, E., Electric fields at the plasma membrane level: a neglected element in the mechanisms of cell signalling (1996) Bioessays, 18, pp. 495-504. , https://doi.org/10.1002/bies.950180612
  • Balla, T., Inositol-lipid binding motifs: signal integrators through protein-lipid and protein-protein interactions (2005) J Cell Sci, 118, pp. 2093-2104. , https://doi.org/10.1242/jcs.02387
  • Takenawa, T., Itoh, T., Membrane targeting and remodeling through phosphoinositide-binding domains (2006) IUBMB Life, 58, pp. 296-303
  • Stachowiak, J.C., Brodsky, F.M., Miller, E.A., A cost-benefit analysis of the physical mechanisms of membrane curvature (2013) Nat Cell Biol, 15, pp. 1019-1027. , https://doi.org/10.1038/ncb2832
  • Kirchhausen, T., Bending membranes (2012) Nat Cell Biol, 14, pp. 906-908. , https://doi.org/10.1038/ncb2570
  • Delgui, L., Oña, A., Gutiérrez, S., Luque, D., Navarro, A., Castón, J.R., Rodríguez, J.F., The capsid protein of infectious bursal disease virus contains a functional α4β1 integrin ligand motif (2009) Virology, 386, pp. 360-372. , https://doi.org/10.1016/j.virol.2008.12.036
  • Gorbalenya, A.E., Koonin, E.V., Donchenko, A.P., Blinov, V.M., A novel superfamily of nucleoside triphosphate-binding motif containing proteins which are probably involved in duplex unwinding in DNA and RNA replication and recombination (1988) FEBS Lett, 235, pp. 16-24. , https://doi.org/10.1016/0014-5793(88)81226-2
  • Adams, M.J., Carstens, E.B., Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2012) (2012) Arch Virol, 157, pp. 1411-1422. , https://doi.org/10.1007/s00705-012-1299-6
  • Gorbalenya, A.E., Koonin, E.V., Birnavirus RNA polymerase is related to polymerases of positive strand RNA viruses (1988) Nucleic Acids Res, 16, p. 7735. , https://doi.org/10.1093/nar/16.15.7735
  • Pan, J., Vakharia, V.N., Tao, Y.J., The structure of a birnavirus polymerase reveals a distinct active site topology (2007) Proc Natl Acad Sci U S A, 104, pp. 7385-7390. , https://doi.org/10.1073/pnas.0611599104
  • Johnson, J.E., Munshi, S., Liljas, L., Agrawal, D., Olson, N.H., Reddy, V., Fisher, A., Baker, T.S., Comparative studies of TA3 and TA4 icosahedral RNA insect viruses (1994) Arch Virol Suppl, 9, pp. 497-512
  • Ertel, K.J., Benefield, D., Castaño-Diez, D., Pennington, J.G., Horswill, M., den Boon, J.A., Otegui, M.S., Ahlquist, P., Cryo-electron tomography reveals novel features of a viral RNA replication compartment (2017) Elife, 6, p. 25940. , https://doi.org/10.7554/eLife.25940
  • Fernández-Arias, A., Risco, C., Martínez, S., Albar, J.P., Rodríguez, J.F., Expression of ORF A1 of infectious bursal disease virus results in the formation of virus-like particles (1998) J Gen Virol, 79, pp. 1047-1054. , https://doi.org/10.1099/0022-1317-79-5-1047
  • Lin, T.-W., Lo, C.-W., Lai, S.-Y., Fan, R.-J., Lo, C.-J., Chou, Y.-M., Thiruvengadam, R., Wang, M.-Y., Chicken heat shock protein 90 is a component of the putative cellular receptor complex of infectious bursal disease virus (2007) J Virol, 81, pp. 8730-8741. , https://doi.org/10.1128/JVI.00332-07

Citas:

---------- APA ----------
Gimenez, M.C., Zanetti, F.A., Terebiznik, M.R., Colombo, M.I. & Delgui, L.R. (2018) . Infectious bursal disease virus hijacks endosomal membranes as the scaffolding structure for viral replication. Journal of Virology, 92(11).
http://dx.doi.org/10.1128/JVI.01964-17
---------- CHICAGO ----------
Gimenez, M.C., Zanetti, F.A., Terebiznik, M.R., Colombo, M.I., Delgui, L.R. "Infectious bursal disease virus hijacks endosomal membranes as the scaffolding structure for viral replication" . Journal of Virology 92, no. 11 (2018).
http://dx.doi.org/10.1128/JVI.01964-17
---------- MLA ----------
Gimenez, M.C., Zanetti, F.A., Terebiznik, M.R., Colombo, M.I., Delgui, L.R. "Infectious bursal disease virus hijacks endosomal membranes as the scaffolding structure for viral replication" . Journal of Virology, vol. 92, no. 11, 2018.
http://dx.doi.org/10.1128/JVI.01964-17
---------- VANCOUVER ----------
Gimenez, M.C., Zanetti, F.A., Terebiznik, M.R., Colombo, M.I., Delgui, L.R. Infectious bursal disease virus hijacks endosomal membranes as the scaffolding structure for viral replication. J. Virol. 2018;92(11).
http://dx.doi.org/10.1128/JVI.01964-17