Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Mammarenaviruses are enveloped viruses with a bisegmented negativestranded RNA genome that encodes the nucleocapsid protein (NP), the envelope glycoprotein precursor (GPC), the RNA polymerase (L), and a RING matrix protein (Z). Viral proteins are synthesized from subgenomic mRNAs bearing a capped 5' untranslated region (UTR) and lacking 3' poly(A) tail. We analyzed the translation strategy of Tacaribe virus (TCRV), a prototype of the New World mammarenaviruses. A virus-like transcript that carries a reporter gene in place of the NP open reading frame and transcripts bearing modified 5' and/or 3' UTR were evaluated in a cellbased translation assay. We found that the presence of the cap structure at the 5' end dramatically increases translation efficiency and that the viral 5' UTR comprises stimulatory signals while the 3' UTR,specifically the presence of a terminal C+G-rich sequence and/or a stem-loop structure, down-modulates translation. Additionally, translation was profoundly reduced in eukaryotic initiation factor (eIF) 4G-inactivated cells, whereas depletion of intracellular levels of eIF4E had less impact on virus-like mRNA translation than on a cell-like transcript. Translation efficiency was independent of NP expression or TCRV infection. Our results indicate that TCRV mRNAs are translated using a cap-dependent mechanism, whose efficiency relies on the interplay between stimulatory signals in the 5' UTR and a negative modulatory element in the 3' UTR. The low dependence on eIF4E suggests that viral mRNAs may engage yet-unknown noncanonical host factors for a cap-dependent initiation mechanism. © 2017 American Society for Microbiology.

Registro:

Documento: Artículo
Título:Regulation of Tacaribe mammarenavirus translation: Positive 5' and negative 3' elements and role of key cellular factors
Autor:Foscaldi, S.; D'Antuono, A.; Noval, M.G.; Gay, G.P.; Scolaro, L.; Lopez, N.
Filiación:Centro de Virología Animal, Instituto de Ciencia y Tecnología Dr. Cesar Milstein, Consejo Nacional de Ciencia y Tecnología, Buenos Aires, Argentina
Fundación Instituto Leloir, Buenos Aires, Argentina
Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Department of Microbiology, New York University, Alexandria Center for Life Sciences, New York, NY, United States
Palabras clave:Arenavirus; MRNA; Translation; initiation factor 4E; initiation factor 4G; messenger RNA; nucleocapsid protein; viral protein; 3' untranslated region; 5' untranslated region; initiation factor 4E; initiation factor 4G; messenger RNA; regulatory RNA sequence; 3' untranslated region; 5' untranslated region; Article; carboxy terminal sequence; controlled study; down regulation; gene sequence; gene structure; genetic transcription; nonhuman; priority journal; protein blood level; protein expression; reporter gene; RNA interference; RNA sequence; RNA translation; Tacaribe virus; translation regulation; virus gene; 3' untranslated region; 5' untranslated region; animal; cell line; gene expression regulation; genetics; host pathogen interaction; human; metabolism; New World arenavirus; protein synthesis; regulatory RNA sequence; 3' Untranslated Regions; 5' Untranslated Regions; Animals; Arenaviruses, New World; Cell Line; Eukaryotic Initiation Factor-4E; Eukaryotic Initiation Factor-4G; Gene Expression Regulation, Viral; Host-Pathogen Interactions; Humans; Protein Biosynthesis; Regulatory Sequences, Ribonucleic Acid; RNA, Messenger
Año:2017
Volumen:91
Número:14
DOI: http://dx.doi.org/10.1128/JVI.00084-17
Título revista:Journal of Virology
Título revista abreviado:J. Virol.
ISSN:0022538X
CODEN:JOVIA
CAS:3' Untranslated Regions; 5' Untranslated Regions; Eukaryotic Initiation Factor-4E; Eukaryotic Initiation Factor-4G; Regulatory Sequences, Ribonucleic Acid; RNA, Messenger
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0022538X_v91_n14_p_Foscaldi

Referencias:

  • Radoshitzky, S.R., Bao, Y., Buchmeier, M.J., Charrel, R.N., Clawson, A.N., Clegg, C.S., DeRisi, J.L., de la Torre, J.C., Past, present, and future of arenavirus taxonomy (2015) Arch Virol, 160, pp. 1851-1874. , https://doi.org/10.1007/s00705-015-2418-y
  • Martínez-Peralta, L.A., Coto, C.E., Weissenbacher, M.C., The Tacaribe complex: the close relationship between a pathogenic (Junin) and a nonpathogenic (Tacaribe) arenavirus (1993) The Arenaviridae, pp. 281-296. , In Salvato MS (ed). Plenum Press, New York, NY
  • Buchmeier, M.J., de La Torre, J.C., Peters, C.J., Arenaviridae: the viruses and their replication (2007) Fields virology, 2, pp. 1791-1828. , Knipe DM, Howley PM, Griffin DE, Lamb RA, Martin MA, Roizman B, Straus SE (ed), 5th ed. Lippincott Williams & Wilkins, Philadelphia, PA
  • Franze-Fernández, M.T., Iapalucci, S., López, N., Rossi, C., Subgenomic RNAs of Tacaribe virus (1993) The Arenaviridae, pp. 113-132. , Salvato MS (ed). Plenum Press, New York, NY
  • Hass, M., Golnitz, U., Muller, S., Becker-Ziaja, B., Gunther, S., Replicon system for Lassa virus (2004) J Virol, 78, pp. 13793-13803. , https://doi.org/10.1128/JVI.78.24.13793-13803.2004
  • Lee, K.J., Novella, I.S., Teng, M.N., Oldstone, M.B., de La Torre, J.C., NP and L proteins of lymphocytic choriomeningitis virus (LCMV) are sufficient for efficient transcription and replication of LCMV genomic RNA analogs (2000) J Virol, 74, pp. 3470-3477. , https://doi.org/10.1128/JVI.74.8.3470-3477.2000
  • López, N., Jacamo, R., Franze-Fernandez, M.T., Transcription and RNA replication of Tacaribe virus genome and antigenome analogs require N and L proteins: Z protein is an inhibitor of these processes (2001) J Virol, 75, pp. 12241-12251. , https://doi.org/10.1128/JVI.75.24.12241-12251.2001
  • Bergeron, E., Chakrabarti, A.K., Bird, B.H., Dodd, K.A., McMullan, L.K., Spiropoulou, C.F., Nichol, S.T., Albarino, C.G., Reverse genetics recovery of Lujo virus and role of virus RNA secondary structures in efficient virus growth (2012) J Virol, 86, pp. 10759-10765. , https://doi.org/10.1128/JVI.01144-12
  • Meyer, B.J., de la Torre, J.C., Southern, P.J., Arenaviruses: genomic RNAs, transcription, and replication (2002) Curr Top Microbiol Immunol, 262, pp. 139-157
  • Pinschewer, D.D., Perez, M., de la Torre, J.C., Dual role of the lymphocytic choriomeningitis virus intergenic region in transcription termination and virus propagation (2005) J Virol, 79, pp. 4519-4526. , https://doi.org/10.1128/JVI.79.7.4519-4526.2005
  • Kolakofsky, D., The unusual mechanism of arenavirus RNA synthesis (1993) The Arenaviridae, pp. 103-112. , In Salvato MS (ed). Plenum Press, New York, NY
  • Iapalucci, S., Lopez, N., Franze-Fernandez, M.T., The 3= end termini of the Tacaribe arenavirus subgenomic RNAs (1991) Virology, 182, pp. 269-278. , https://doi.org/10.1016/0042-6822(91)90670-7
  • Tortorici, M.A., Albarino, C.G., Posik, D.M., Ghiringhelli, P.D., Lozano, M.E., Rivera Pomar, R., Romanowski, V., Arenavirus nucleocapsid protein displays a transcriptional antitermination activity in vivo (2001) Virus Res, 73, pp. 41-55. , https://doi.org/10.1016/S0168-1702(00)00222-7
  • López, N., Franze-Fernandez, M.T., A single stem-loop structure in Tacaribe arenavirus intergenic region is essential for transcription termination but is not required for a correct initiation of transcription and replication (2007) Virus Res, 124, pp. 237-244. , https://doi.org/10.1016/j.virusres.2006.10.007
  • Iwasaki, M., Ngo, N., Cubitt, B., Teijaro, J.R., de la Torre, J.C., General molecular strategy for development of arenavirus live-attenuated vaccines (2015) J Virol, 89, pp. 12166-12177. , https://doi.org/10.1128/JVI.02075-15
  • Jackson, R.J., Hellen, C.U., Pestova, T.V., The mechanism of eukaryotic translation initiation and principles of its regulation (2010) Nat Rev Mol Cell Biol, 11, pp. 113-127. , https://doi.org/10.1038/nrm2838
  • Sonenberg, N., Hinnebusch, A.G., Regulation of translation initiation in eukaryotes: mechanisms and biological targets (2009) Cell, 136, pp. 731-745. , https://doi.org/10.1016/j.cell.2009.01.042
  • Au, H.H., Jan, E., Novel viral translation strategies (2014) Wiley Interdiscip Rev RNA, 5, pp. 779-801. , https://doi.org/10.1002/wrna.1246
  • Guerrero, S., Batisse, J., Libre, C., Bernacchi, S., Marquet, R., Paillart, J.C., HIV-1 replication and the cellular eukaryotic translation apparatus (2015) Viruses, 7, pp. 199-218. , https://doi.org/10.3390/v7010199
  • Walsh, D., Mohr, I., Viral subversion of the host protein synthesis machinery (2011) Nat Rev Microbiol, 9, pp. 860-875. , https://doi.org/10.1038/nrmicro2655
  • Lopez, S., Oceguera, A., Sandoval-Jaime, C., Stress response and translation control in rotavirus infection (2016) Viruses, 8, p. 162. , https://doi.org/10.3390/v8060162
  • López, R., Franze-Fernandez, M.T., Effect of Tacaribe virus infection on host cell protein and nucleic acid synthesis (1985) J Gen Virol, 66, pp. 1753-1761
  • Linero, F., Welnowska, E., Carrasco, L., Scolaro, L., Participation of eIF4F complex in Junin virus infection: blockage of eIF4E does not impair virus replication (2013) Cell Microbiol, 15, pp. 1766-1782
  • Kozak, M., A short leader sequence impairs the fidelity of initiation by eukaryotic ribosomes (1991) Gene Expr, 1, pp. 111-115
  • Ling, J., Morley, S.J., Pain, V.M., Marzluff, W.F., Gallie, D.R., The histone 3=-terminal stem-loop-binding protein enhances translation through a functional and physical interaction with eukaryotic initiation factor 4G (eIF4G) and eIF3 (2002) Mol Cell Biol, 22, pp. 7853-7867. , https://doi.org/10.1128/MCB.22.22.7853-7867.2002
  • Burgui, I., Yanguez, E., Sonenberg, N., Nieto, A., Influenza virus mRNA translation revisited: is the eIF4E cap-binding factor required for viral mRNA translation? (2007) J Virol, 81, pp. 12427-12438. , https://doi.org/10.1128/JVI.01105-07
  • Brunetti, J.E., Scolaro, L.A., Castilla, V., The heterogeneous nuclear ribonucleoprotein K (hnRNP K) is a host factor required for dengue virus and Junín virus multiplication (2015) Virus Res, 203, pp. 84-91. , https://doi.org/10.1016/j.virusres.2015.04.001
  • Maeto, C.A., Knott, M.E., Linero, F.N., Ellenberg, P.C., Scolaro, L.A., Castilla, V., Differential effect of acute and persistent Junin virus infections on the nucleo-cytoplasmic trafficking and expression of heterogeneous nuclear ribonucleoproteins type A and B (2011) J Gen Virol, 92, pp. 2181-2190. , https://doi.org/10.1099/vir.0.030163-0
  • Gingras, A.C., Raught, B., Sonenberg, N., eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation (1999) Annu Rev Biochem, 68, pp. 913-963. , https://doi.org/10.1146/annurev.biochem.68.1.913
  • Jan, E., Mohr, I., Walsh, D., A cap-to-tail guide to mRNA translation strategies in virus-infected cells (2016) Annu Rev Virol, 3, pp. 283-307. , https://doi.org/10.1146/annurev-virology-100114-055014
  • Yángüez, E., Rodriguez, P., Goodfellow, I., Nieto, A., Influenza virus polymerase confers independence of the cellular cap-binding factor eIF4E for viral mRNA translation (2012) Virology, 422, pp. 297-307. , https://doi.org/10.1016/j.virol.2011.10.028
  • Mir, M.A., Panganiban, A.T., A protein that replaces the entire cellular eIF4F complex (2008) EMBO J, 27, pp. 3129-3139. , https://doi.org/10.1038/emboj.2008.228
  • Hastie, K.M., Liu, T., Li, S., King, L.B., Ngo, N., Zandonatti, M.A., Woods, V.L., Saphire, E.O., Crystal structure of the Lassa virus nucleoprotein-RNA complex reveals a gating mechanism for RNA binding (2011) Proc Natl Acad Sci U S A, 108, pp. 19365-19370. , https://doi.org/10.1073/pnas.1108515108
  • Qi, X., Lan, S., Wang, W., Schelde, L.M., Dong, H., Wallat, G.D., Ly, H., Dong, C., Cap binding and immune evasion revealed by Lassa nucleoprotein structure (2010) Nature, 468, pp. 779-783. , https://doi.org/10.1038/nature09605
  • Baird, N.L., York, J., Nunberg, J.H., Arenavirus infection induces discrete cytosolic structures for RNA replication (2012) J Virol, 86, pp. 11301-11310. , https://doi.org/10.1128/JVI.01635-12
  • Knopp, K.A., Ngo, T., Gershon, P.D., Buchmeier, M.J., Single nucleoprotein residue modulates arenavirus replication complex formation (2015) mBio, 6. , https://doi.org/10.1128/mBio.00524-15
  • Edgil, D., Polacek, C., Harris, E., Dengue virus utilizes a novel strategy for translation initiation when cap-dependent translation is inhibited (2006) J Virol, 80, pp. 2976-2986. , https://doi.org/10.1128/JVI.80.6.2976-2986.2006
  • Casabona, J.C., Levingston Macleod, J.M., Loureiro, M.E., Gomez, G.A., Lopez, N., The RING domain and the L79 residue of Z protein are involved in both the rescue of nucleocapsids and the incorporation of glycoproteins into infectious chimeric arenavirus-like particles (2009) J Virol, 83, pp. 7029-7039. , https://doi.org/10.1128/JVI.00329-09
  • D'Antuono, A., Loureiro, M.E., Foscaldi, S., Marino-Buslje, C., Lopez, N., Differential contributions of tacaribe arenavirus nucleoprotein N-terminal and C-terminal residues to nucleocapsid functional activity (2014) J Virol, 88, pp. 6492-6505. , https://doi.org/10.1128/JVI.00321-14
  • Anson, D.S., Choo, K.H., Rees, D.J., Giannelli, F., Gould, K., Huddleston, J.A., Brownlee, G.G., The gene structure of human anti-haemophilic factor IX (1984) EMBO J, 3, pp. 1053-1060
  • Moss, B., Elroy-Stein, O., Mizukami, T., Alexander, W.A., Fuerst, T.R., Product review. New mammalian expression vectors (1990) Nature, 348, pp. 91-92
  • Radecke, F., Spielhofer, P., Schneider, H., Kaelin, K., Huber, M., Dotsch, C., Christiansen, G., Billeter, M.A., Rescue of measles viruses from cloned DNA (1995) EMBO J, 14, pp. 5773-5784
  • Castelló, A., Alvarez, E., Carrasco, L., Differential cleavage of eIF4GI and eIF4GII in mammalian cells. Effects on translation (2006) J Biol Chem, 281, pp. 33206-33216
  • Rossi, C., Rey, O., Jenik, P., Franze-Fernandez, M.T., Immunological identification of Tacaribe virus proteins (1996) Res Virol, 147, pp. 203-211
  • Abramoff, M.D., Magalhaes, P.J., Ram, S.J., Image processing with ImageJ (2004) Biophotonics Int, 11, pp. 36-42
  • Zuker, M., Mfold web server for nucleic acid folding and hybridization prediction (2003) Nucleic Acids Res, 31, pp. 3406-3415. , https://doi.org/10.1093/nar/gkg595

Citas:

---------- APA ----------
Foscaldi, S., D'Antuono, A., Noval, M.G., Gay, G.P., Scolaro, L. & Lopez, N. (2017) . Regulation of Tacaribe mammarenavirus translation: Positive 5' and negative 3' elements and role of key cellular factors. Journal of Virology, 91(14).
http://dx.doi.org/10.1128/JVI.00084-17
---------- CHICAGO ----------
Foscaldi, S., D'Antuono, A., Noval, M.G., Gay, G.P., Scolaro, L., Lopez, N. "Regulation of Tacaribe mammarenavirus translation: Positive 5' and negative 3' elements and role of key cellular factors" . Journal of Virology 91, no. 14 (2017).
http://dx.doi.org/10.1128/JVI.00084-17
---------- MLA ----------
Foscaldi, S., D'Antuono, A., Noval, M.G., Gay, G.P., Scolaro, L., Lopez, N. "Regulation of Tacaribe mammarenavirus translation: Positive 5' and negative 3' elements and role of key cellular factors" . Journal of Virology, vol. 91, no. 14, 2017.
http://dx.doi.org/10.1128/JVI.00084-17
---------- VANCOUVER ----------
Foscaldi, S., D'Antuono, A., Noval, M.G., Gay, G.P., Scolaro, L., Lopez, N. Regulation of Tacaribe mammarenavirus translation: Positive 5' and negative 3' elements and role of key cellular factors. J. Virol. 2017;91(14).
http://dx.doi.org/10.1128/JVI.00084-17