Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Secondary and tertiary RNA structures present in viral RNA genomes play essential regulatory roles during translation, RNA replication, and assembly of new viral particles. In the case of flaviviruses, RNA-RNA interactions between the 5′ and 3′ ends of the genome have been proposed to be required for RNA replication. We found that two RNA elements present at the ends of the dengue virus genome interact in vitro with high affinity. Visualization of individual molecules by atomic force microscopy reveled that physical interaction between these RNA elements results in cyclization of the viral RNA. Using RNA binding assays, we found that the putative cyclization sequences, known as 5′ and 3′ CS, present in all mosquito-borne flaviviruses, were necessary but not sufficient for RNA-RNA interaction. Additional sequences present at the 5′ and 3′ untranslated regions of the viral RNA were also required for RNA-RNA complex formation. We named these sequences 5′ and 3′ UAR (upstream AUG region). In order to investigate the functional role of 5′-3′ UAR complementarity, these sequences were mutated either separately, to destroy base pairing, or simultaneously, to restore complementarity in the context of full-length dengue virus RNA. Nonviable viruses were recovered after transfection of dengue virus RNA carrying mutations either at the 5′ or 3′ UAR, while the RNA containing the compensatory mutations was able to replicate. Since sequence complementarity between the ends of the genome is required for dengue virus viability, we propose that cyclization of the RNA is a required conformation for viral replication. Copyright © 2005, American Society for Microbiology. All Rights Reserved.

Registro:

Documento: Artículo
Título:Long-range RNA-RNA interactions circularize the dengue virus genome
Autor:Alvarez, D.E.; Lodeiro, M.F.; Ludueña, S.J.; Pietrasanta, L.I.; Gamarnik, A.V.
Filiación:Fundación Instituto Leloir, Avenida Patricias Argentinas 435, Buenos Aires 1405, Argentina
Centro de Microscopías Avanzadas, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:virus RNA; article; atomic force microscopy; base pairing; binding assay; cyclization; Dengue virus; Flavivirus; genetic transfection; immunofluorescence; in vitro study; nonhuman; priority journal; protein nucleic acid interaction; RNA binding; RNA extraction; RNA replication; RNA sequence; untranslated region; virus genome; virus mutation; virus transcription; Animals; Base Sequence; Binding Sites; Cell Line; Cricetinae; Dengue Virus; Microscopy, Atomic Force; Models, Molecular; Molecular Sequence Data; Mutagenesis, Site-Directed; Nucleic Acid Conformation; RNA; RNA, Viral; Virus Replication; Dengue virus
Año:2005
Volumen:79
Número:11
Página de inicio:6631
Página de fin:6643
DOI: http://dx.doi.org/10.1128/JVI.79.11.6631-6643.2005
Título revista:Journal of Virology
Título revista abreviado:J. Virol.
ISSN:0022538X
CODEN:JOVIA
CAS:RNA, 63231-63-0; RNA, circular; RNA, Viral
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_0022538X_v79_n11_p6631_Alvarez.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0022538X_v79_n11_p6631_Alvarez

Referencias:

  • Andersen, E.S., Contera, S.A., Knudsen, B., Damgaard, C.K., Besenbacher, F., Kjems, J., Role of the trans-activation response element in dimerization of HIV-1 RNA (2004) J. Biol. Chem., 279, pp. 22243-22249
  • Andreev, I.A., Kim, S.H., Kalinina, N.O., Rakitina, D.V., Fitzgerald, A.G., Palukaitis, P., Taliansky, M.E., Molecular interactions between a plant virus movement protein and RNA: Force spectroscopy investigation (2004) J. Mol. Biol., 339, pp. 1041-1047
  • Barends, S., Bink, H.H., Van Den Worm, S.H., Pleij, C.W., Kraal, B., Entrapping ribosomes for viral translation: TRNA mimicry as a molecular Trojan horse (2003) Cell, 112, pp. 123-129
  • Barton, D.J., O'Donnell, B.J., Flanegan, J.B., 5′ cloverleaf in poliovirus RNA is a cis-acting replication element required for negative-strand synthesis (2001) EMBO J., 20, pp. 1439-1448
  • Blackwell, J.L., Brinton, M.A., Translation elongation factor-1 alpha interacts with the 3′ stem-loop region of West Nile virus genomic RNA (1997) J. Virol., 71, pp. 6433-6444
  • Blumenthal, T., Carmichael, G.G., RNA replication: Function and structure of Qbeta-replicase (1979) Annu. Rev. Biochem., 48, pp. 525-548
  • Bonin, M., Oberstrass, J., Lukacs, N., Ewert, K., Oesterschulze, E., Kassing, R., Nellen, W., Determination of preferential binding sites for anti-dsRNA antibodies on double-stranded RNA by scanning force microscopy (2000) RNA, 6, pp. 563-570
  • Brinton, M.A., Fernandez, A.V., Dispoto, J.H., The 3′-nucleotides of flavivirus genomic RNA form a conserved secondary structure (1986) Virology, 153, pp. 113-121
  • Bustamante, C., Rivetti, C., Visualizing protein-nucleic acid interactions on a large scale with the scanning force microscope (1996) Annu. Rev. Biophys. Biomol. Struct., 25, pp. 395-429
  • Chen, C.J., Kuo, M.D., Chien, L.J., Hsu, S.L., Wang, Y.M., Lin, J.H., RNA-protein interactions: Involvement of NS3, NS5, and 3′ noncoding regions of Japanese encephalitis virus genomic RNA (1997) J. Virol., 71, pp. 3466-3473
  • Corver, J., Lenches, E., Smith, K., Robison, R.A., Sando, T., Strauss, E.G., Strauss, J.H., Fine mapping of a cis-acting sequence element in yellow fever virus RNA that is required for RNA replication and cyclization (2003) J. Virol., 77, pp. 2265-2270
  • Cui, T., Sugrue, R.J., Xu, Q., Lee, A.K., Chan, Y.C., Fu, J., Recombinant dengue virus type 1 NS3 protein exhibits specific viral RNA binding and NTPase activity regulated by the NS5 protein (1998) Virology, 246, pp. 409-417
  • De Nova-Ocampo, M., Villegas-Sepulveda, N., Del Angel, R.M., Translation elongation factor-1alpha, La, and PTB interact with the 3′ untranslated region of dengue 4 virus RNA (2002) Virology, 295, pp. 337-347
  • Fang, X., Pan, T., Sosnick, T.R., A thermodynamic framework and cooperativity in the tertiary folding of a Mg2+-dependent ribozyme (1999) Biochemistry, 38, pp. 16840-16846
  • Frey, T.K., Gard, D.L., Strauss, J.H., Biophysical studies on circle formation by Sindbis virus 49 S RNA (1979) J. Mol. Biol., 132, pp. 1-18
  • Frolov, I., Hardy, R., Rice, C.M., Cis-acting RNA elements at the 5′ end of Sindbis virus genome RNA regulate minus- and plus-strand RNA synthesis (2001) RNA, 7, pp. 1638-1651
  • Gamarnik, A.V., Andino, R., Interactions of viral protein 3CD and poly(rC) binding protein with the 5′ untranslated region of the poliovirus genome (2000) J. Virol., 74, pp. 2219-2226
  • Gamarnik, A.V., Andino, R., Switch from translation to RNA replication in a positive-stranded RNA virus (1998) Genes Dev., 12, pp. 2293-2304
  • Gamarnik, A.V., Andino, R., Two functional complexes formed by KH domain containing proteins with the 5′ noncoding region of poliovirus RNA (1997) RNA, 3, pp. 882-892
  • Garcia-Montalvo, B.M., Medina, F., Del Angel, R.M., La protein binds to NS5 and NS3 and to the 5′ and 3′ ends of dengue 4 virus RNA (2004) Virus Res., 102, pp. 141-150
  • Gorchakov, R., Hardy, R., Rice, C.M., Frolov, I., Selection of functional 5′ cis-acting elements promoting efficient Sindbis virus genome replication (2004) J. Virol., 78, pp. 61-75
  • Guo, L., Allen, E.M., Miller, W.A., Base-pairing between untranslated regions facilitates translation of uncapped, nonpolyadenylated viral RNA (2001) Mol. Cell, 7, pp. 1103-1109
  • Hahn, C.S., Hahn, Y.S., Rice, C.M., Lee, E., Dalgarno, L., Strauss, E.G., Strauss, J.H., Conserved elements in the 3′ untranslated region of flavivirus RNAs and potential cyclization sequences (1987) J. Mol. Biol., 198, pp. 33-41
  • Hansma, H.G., Kasuya, K., Oroudjev, E., Atomic force microscopy imaging and pulling of nucleic acids (2004) Curr. Opin. Struct. Biol., 14, pp. 380-385
  • Hansma, H.G., Kim, K.J., Laney, D.E., Garcia, R.A., Argaman, M., Allen, M.J., Parsons, S.M., Properties of biomolecules measured from atomic force microscope images: A review (1997) J. Struct. Biol., 119, pp. 99-108
  • Hansma, H.G., Laney, D.E., DNA binding to mica correlates with cationic radius: Assay by atomic force microscopy (1996) Biophys. J., 70, pp. 1933-1939
  • Hansma, H.G., Revenko, I., Kim, K., Laney, D.E., Atomic force microscopy of long and short double-stranded, single-stranded and triple-stranded nucleic acids (1996) Nucleic Acids Res., 24, pp. 713-720
  • Hansma, H.G., Vesenka, J., Siegerist, C., Kelderman, G., Morrett, H., Sinsheimer, R.L., Elings, V., Hansma, P.K., Reproducible imaging and dissection of plasmid DNA under liquid with the atomic force microscope (1992) Science, 256, pp. 1180-1184
  • Henn, A., Medalia, O., Shi, S.P., Steinberg, M., Franceschi, F., Sagi, I., Visualization of unwinding activity of duplex RNA by DbpA, a DEAD box helicase, at single-molecule resolution by atomic force microscopy (2001) Proc. Natl. Acad. Sci. USA, 98, pp. 5007-5012
  • Herold, J., Andino, R., Poliovirus RNA replication requires genome circularization through a protein-protein bridge (2001) Mol. Cell, 7, pp. 581-591
  • Hewlett, M.J., Pettersson, R.F., Baltimore, D., Circular forms of Uukuniemi virion RNA: An electron microscopic study (1977) J. Virol., 21, pp. 1085-1093
  • Hsu, M.T., Parvin, J.D., Gupta, S., Krystal, M., Palese, P., Genomic RNAs of influenza viruses are held in a circular conformation in virions and in infected cells by a terminal panhandle (1987) Proc. Natl. Acad. Sci. USA, 84, pp. 8140-8144
  • Isken, O., Grassmann, C.W., Sarisky, R.T., Kann, M., Zhang, S., Grosse, F., Kao, P.N., Behrens, S.E., Members of the NF90/NFAR protein group are involved in the life cycle of a positive-strand RNA virus (2003) EMBO J., 22, pp. 5655-5665
  • Jun, S., Herrick, J., Bensimon, A., Bechhoefer, J., Persistence length of chromatin determines origin spacing in Xenopus early-embryo DNA replication: Quantitative comparisons between theory and experiment (2004) Cell Cycle, 3, pp. 223-229
  • Kapahnke, R., Rappold, W., Desselberger, U., Riesner, D., The stiffness of dsRNA: Hydrodynamic studies on fluorescence-labelled RNA segments of bovine rotavirus (1986) Nucleic Acids Res., 14, pp. 3215-3228
  • Kasas, S., Thomson, N.H., Smith, B.L., Hansma, H.G., Zhu, X., Guthold, M., Bustamante, C., Hansma, P.K., Escherichia coli RNA polymerase activity observed using atomic force microscopy (1997) Biochemistry, 36, pp. 461-468
  • Khromykh, A.A., Kondratieva, N., Sgro, J.Y., Palmenberg, A., Westaway, E.G., Significance in replication of the terminal nucleotides of the flavivirus genome (2003) J. Virol., 77, pp. 10623-10629
  • Khromykh, A.A., Meka, H., Guyatt, K.J., Westaway, E.G., Essential role of cyclization sequences in flavivirus RNA replication (2001) J. Virol., 75, pp. 6719-6728
  • Khromykh, A.A., Westaway, E.G., Subgenomic replicons of the flavivirus Kunjin: Construction and applications (1997) J. Virol., 71, pp. 1497-1505
  • Kinney, R.M., Butrapet, S., Chang, G.J., Tsuchiya, K.R., Roehrig, J.T., Bhamarapravati, N., Gubler, D.J., Construction of infectious cDNA clones for dengue 2 virus: Strain 16681 and its attenuated vaccine derivative, strain PDK-53 (1997) Virology, 230, pp. 300-308
  • Markoff, L., 5′ and 3′ noncoding regions in flavivirus RNA (2003) Adv. Virus Res., 59, pp. 177-228
  • Men, R., Bray, M., Clark, D., Chanock, R.M., Lai, C.J., Dengue type 4 virus mutants containing deletions in the 3′ noncoding region of the RNA genome: Analysis of growth restriction in cell culture and altered viremia pattern and immunogenicity in rhesus monkeys (1996) J. Virol., 70, pp. 3930-3937
  • Misra, V.K., Draper, D.E., The linkage between magnesium binding and RNA folding (2002) J. Mol. Biol., 317, pp. 507-521
  • Neeleman, L., Olsthoorn, R.C., Linthorst, H.J., Bol, J.F., Translation of a nonpolyadenylated viral RNA is enhanced by binding of viral coat protein or polyadenylation of the RNA (2001) Proc. Natl. Acad. Sci. USA, 98, pp. 14286-14291
  • Pietrasanta, L.I., Thrower, D., Hsieh, W., Rao, S., Stemmann, O., Lechner, J., Carbon, J., Hansma, H., Probing the Saccharomyces cerevisiae centromeric DNA (CEN DNA)-binding factor 3 (CBF3) kinetochore complex by using atomic force microscopy (1999) Proc. Natl. Acad. Sci. USA, 96, pp. 3757-3762
  • Piron, M., Vende, P., Cohen, J., Poncet, D., Rotavirus RNA-binding protein NSP3 interacts with eIF4GI and evicts the poly(A) binding protein from eIF4F (1998) EMBO J., 17, pp. 5811-5821
  • Proutski, V., Gould, E.A., Holmes, E.C., Secondary structure of the 3′ untranslated region of flaviviruses: Similarities and differences (1997) Nucleic Acids Res., 25, pp. 1194-1202
  • Rauscher, S., Flamm, C., Mandl, C.W., Heinz, F.X., Stadler, P.F., Secondary structure of the 3′-noncoding region of flavivirus genomes: Comparative analysis of base pairing probabilities (1997) RNA, 3, pp. 779-791
  • Rice, C., Flaviviridae: The viruses and their replication (2001) Fields Virology, 4th Ed., 1, pp. 991-1044. , D. M. Knipe, P. M. Howley, D. E. Griffin, R. A. Lamb, M. A. Martin, B. Roizman, and S. E. Straus (ed.), Lippincott-Raven Publishers, Philadelphia, Pa
  • Saenger, W., (1984) Principles of Nucleic Acid Structures, , Springer Verlag, New York, N.Y
  • Shurtleff, A.C., Beasley, D.W., Chen, J.J., Ni, H., Suderman, M.T., Wang, H., Xu, R., Barrett, A.D., Genetic variation in the 3′ non-coding region of dengue viruses (2001) Virology, 281, pp. 75-87
  • Thurner, C., Witwer, C., Hofacker, I.L., Stadler, P.F., Conserved RNA secondary structures in Flaviviridae genomes (2004) J. Gen. Virol., 85, pp. 1113-1124
  • Trottier, M., Mat-Arip, Y., Zhang, C., Chen, C., Sheng, S., Shao, Z., Guo, P., Probing the structure of monomers and dimers of the bacterial virus phi29 hexamer RNA complex by chemical modification (2000) RNA, 6, pp. 1257-1266
  • Vende, P., Piron, M., Castagne, N., Poncet, D., Efficient translation of rotavirus mRNA requires simultaneous interaction of NSP3 with the eukaryotic translation initiation factor eIF4G and the mRNA 3′ end (2000) J. Virol., 74, pp. 7064-7071
  • Vlot, A.C., Bol, J.F., The 5′ untranslated region of alfalfa mosaic virus RNA 1 is involved in negative-strand RNA synthesis (2003) J. Virol., 77, pp. 11284-11289
  • Walter, B.L., Parsley, T.B., Ehrenfeld, E., Semler, B.L., Distinct poly(rC) binding protein KH domain determinants for poliovirus translation initiation and viral RNA replication (2002) J. Virol., 76, pp. 12008-12022
  • Wang, S., Browning, K.S., Miller, W.A., A viral sequence in the 3′-untranslated region mimics a 5′ cap in facilitating translation of uncapped mRNA (1997) EMBO J., 16, pp. 4107-4116
  • Wang, S., Guo, L., Allen, E., Miller, W.A., A potential mechanism for selective control of cap-independent translation by a viral RNA sequence in cis and in trans (1999) RNA, 5, pp. 728-738
  • Wells, S.E., Hillner, P.E., Vale, R.D., Sachs, A.B., Circularization of mRNA by eukaryotic translation initiation factors (1998) Mol. Cell, 2, pp. 135-140
  • (2002) Disease Outbreak News, , World Health Organization, Geneva, Switzerland
  • Yamakawa, H., (1997) Helical Wormlike Chains in Polymer Solutions, , Springer, Berlin, Germany
  • You, S., Falgout, B., Markotf, L., Padmanabhan, R., In vitro RNA synthesis from exogenous dengue viral RNA templates requires long range interactions between 5′- and 3′-terminal regions that influence RNA structure (2001) J. Biol. Chem., 276, pp. 15581-15591
  • You, S., Padmanabhan, R., A novel in vitro replication system for dengue virus. Initiation of RNA synthesis at the 3′-end of exogenous viral RNA templates requires 5′- and 3′-terminal complementary sequence motifs of the viral RNA (1999) J. Biol. Chem., 274, pp. 33714-33722
  • Zeng, L., Falgout, B., Markoff, L., Identification of specific nucleotide sequences within the conserved 3′-SL in the dengue type 2 virus genome required for replication (1998) J. Virol., 72, pp. 7510-7522
  • Zuker, M., Mfold web server for nucleic acid folding and hybridization prediction (2003) Nucleic Acids Res., 31, pp. 3406-3415

Citas:

---------- APA ----------
Alvarez, D.E., Lodeiro, M.F., Ludueña, S.J., Pietrasanta, L.I. & Gamarnik, A.V. (2005) . Long-range RNA-RNA interactions circularize the dengue virus genome. Journal of Virology, 79(11), 6631-6643.
http://dx.doi.org/10.1128/JVI.79.11.6631-6643.2005
---------- CHICAGO ----------
Alvarez, D.E., Lodeiro, M.F., Ludueña, S.J., Pietrasanta, L.I., Gamarnik, A.V. "Long-range RNA-RNA interactions circularize the dengue virus genome" . Journal of Virology 79, no. 11 (2005) : 6631-6643.
http://dx.doi.org/10.1128/JVI.79.11.6631-6643.2005
---------- MLA ----------
Alvarez, D.E., Lodeiro, M.F., Ludueña, S.J., Pietrasanta, L.I., Gamarnik, A.V. "Long-range RNA-RNA interactions circularize the dengue virus genome" . Journal of Virology, vol. 79, no. 11, 2005, pp. 6631-6643.
http://dx.doi.org/10.1128/JVI.79.11.6631-6643.2005
---------- VANCOUVER ----------
Alvarez, D.E., Lodeiro, M.F., Ludueña, S.J., Pietrasanta, L.I., Gamarnik, A.V. Long-range RNA-RNA interactions circularize the dengue virus genome. J. Virol. 2005;79(11):6631-6643.
http://dx.doi.org/10.1128/JVI.79.11.6631-6643.2005