Artículo

Romeo Aznar, V.; De Majo, M.S.; Fischer, S.; Francisco, D.; Natiello, M.A.; Solari, H.G. "A model for the development of Aedes (Stegomyia) aegypti as a function of the available food" (2015) Journal of Theoretical Biology. 365:311-324
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We discuss the preimaginal development of the mosquito Aedes aegypti from the point of view of the statistics of developmental times and the final body-size of the pupae and adults. We begin the discussion studying existing models in relation to published data for the mosquito. The data suggest a developmental process that is described by exponentially distributed random times. The existing data show as well that the idea of cohorts emerging synchronously is verified only in optimal situations created at the laboratory but it is not verified in field experiments. We propose a model in which immature individuals progress in successive stages, all of them with exponentially distributed times, according to two different rates (one food-dependent and the other food-independent). This phenomenological model, coupled with a general model for growing, can explain the existing observations and new results produced in this work. The emerging picture is that the development of the larvae proceeds through a sequence of steps. Some of the steps depend on the available food. While food is in abundance, all steps can be thought as having equal duration, but when food is scarce, those steps that depend on food take considerably longer times. For insufficient levels of food, increase in larval mortality sets in. As a consequence of the smaller rates, the average pupation time increases and the cohort disperses in time. Dispersion, as measured by standard deviation, becomes a quadratic function of the average time indicating that cohort dispersion responds to the same causes than delays in pupation and adult emergence. During the whole developmental process the larva grows monotonically, initially at an exponential rate but later at decreasing rates, approaching a final body-size. Growth is stopped by maturation when it is already slow. As a consequence of this process, there is a slight bias favoring small individuals: Small individuals are born before larger individuals, although the tendency is very weak. © 2014 Elsevier Ltd.

Registro:

Documento: Artículo
Título:A model for the development of Aedes (Stegomyia) aegypti as a function of the available food
Autor:Romeo Aznar, V.; De Majo, M.S.; Fischer, S.; Francisco, D.; Natiello, M.A.; Solari, H.G.
Filiación:Departamento de Física, FCEN-UBA and IFIBA-CONICET, Argentina
Departamento de Ecología, Genética y Evolución and Instituto IEGEBA (UBA-CONICET), FCEN-UBA, Argentina
Centre for Mathematical Sciences, Lund University, Sweden
Palabras clave:Aedes aegypti; Body-size; Larvae maturation; Statistics; Time; biological development; body size; food availability; larva; maturation; modeling; mosquito; statistical analysis; adult; Aedes aegypti; Article; body size; body weight; data processing; developmental stage; dispersion; female; food availability; food deprivation; food intake; larval development; male; mathematical model; mortality; nonhuman; pupation; qualitative research; quantitative study; sensitivity analysis; window model; Aedes; anatomy and histology; animal; biological model; biomass; food; growth, development and aging; larva; physiology; probability; pupa; time; Aedes aegypti; Aedes; Animals; Biomass; Body Size; Female; Food; Larva; Male; Models, Biological; Probability; Pupa; Time Factors
Año:2015
Volumen:365
Página de inicio:311
Página de fin:324
DOI: http://dx.doi.org/10.1016/j.jtbi.2014.10.016
Título revista:Journal of Theoretical Biology
Título revista abreviado:J. Theor. Biol.
ISSN:00225193
CODEN:JTBIA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00225193_v365_n_p311_RomeoAznar

Referencias:

  • Arrivillaga, J., Barrera, R., Food as a limiting factor for Aedes aegypti in water-storage containers (2004) J. Vector Ecol., 29, pp. 11-20
  • Bar-Zeev, M., The effect of temperature on the growth rate and survival of the immature stages of Aedes aegypti (1958) Bull. Entomol. Res., 49, pp. 157-163
  • Barrera, R., Competition and Resistance to Starvation in Larvae of Container-Inhabiting Aedes Mosquitoes (1996) Ecol. Entomol., 21, pp. 1 17-127
  • Barrera, R., Amador, M., Clark, G.G., Ecological factors influencing Aedes aegypti (Diptera: Culicidae) productivity in artificial containers in Salinas, Puerto Rico (2006) J. Med. Entomol., 43 (3), pp. 484-492
  • Beran, R., Simulated power functions (1986) Ann. Stat., 14, pp. 151-173
  • Bocharov, G.A., Rihan, F.A., Numerical modelling in biosciences using delay differential equations (2000) J. Comput. Appl. Math., 125 (1), pp. 183-199
  • Burks, A.W., Peirce's Theory of Abduction (1946) Philos. Sci., 1, pp. 301-306
  • Carpenter, S.R., Experimental test of the pupation window model for development of detritivorous insects (1984) Ecol. Model., 23 (3), pp. 257-264
  • Chernick, M.R., (2008) Bootstrap Methods-A Guide for Practitioners and Researchers, , Wiley, Hoboken, N.J
  • Chowell, G., Diaz-Dueñas, P., Miller, J.C., Alcazar-Velazco, A., Hyman, J.M., Fenimore, P.W., Castillo-Chavez, C., Estimation of the reproduction number of dengue fever from spatial epidemic (2007) Math. Biosci., 208, pp. 571-589
  • Chowell, G.F.R., Olea, A., Aguilera, X., Nesse, H., Hyman, J.M., The basic reproduction number R0 and effectiveness of reactive interventions during dengue epidemics. the 2002 dengue outbreak in Easter Island Chile (2013) Math. Biosci. Eng., 10 (5-6), pp. 1455-1474
  • Christophers, R., (1960) Aedes aegypti L. the Yellow Fever Mosquito, , Cambridge University Press, Cambridge
  • Conlan, A.J.K., Rohani, P.L., Alun, L., Keeling, M., Bryan, G., Resolving the impact of waiting time distributions on the persistence of measles (2010) J. R. Soc. Interface, 7 (45), pp. 623-640
  • Conover, W.J., Several k-sample Kolmogorov-Smirnov tests (1965) Ann. Math. Stat., 36 (3), pp. 1019-1026
  • Conover, W.J., A Kolmogorov goodness-of-fit test for discontinuous distributions (1972) J. Am. Stat. Assoc., 67 (339), pp. 591-596
  • Durrett, R., (2001) Essentials of Stochastic Processes, , Springer Verlag, New York
  • Dye, C., Intraspecific competition amongst larval Aedes aegypti. food exploitation or chemical interference (1982) Ecol. Entomol., 7, pp. 39-46
  • Dégallier, P.N., Hervé, J.P., Rosa, A.F.A., Travassos, D., Sa, G.C., Aedes aegypti (L.). importance de Sa Bioéologie dans la transmission de la dengue et des Autres Arbobirus (1988) Bull. Soc. Pathol. Exot., 81, pp. 97-110
  • Efron, B., Tibshirani, R., (1993) An Introduction to the Bootstrap, , Chapman and Hall, New York
  • Ellis, A.M., Garcia, A.J., Focks, D.A., Morrison, A.C., Scott, T.W., Parameterization and sensitivity analysis of a complex simulation model for mosquito population dynamics dengue transmission and their control (2011) Am. J. Trop. Med. Hyg., 85 (2), pp. 257-264
  • Ethier, S.N., Kurtz, T.G., (1986) Markov Processes, , John Wiley and Sons, New York
  • Focks, D.A., Haile, D.C., Daniels, E., Moun, G.A., Dynamics life table model for Aedes aegypti. analysis of the literature and model development (1993) J. Med. Entomol., 30, pp. 1003-1018
  • Gilpin, M.E., McClelland, G.A.H., Systems analysis of the yellow fever mosquito Aedes aegypti (1979) Fortschr. Zool., 25, pp. 355-388
  • Gimnig, J.E., Ombok, M., Otieno, S., Kaufman, M.G., Vulule, J.M., Walker, E.D., Density-dependent development of Anopheles gambiae (Diptera: Culicidae) larvae in artificial habitats (2002) J. Med. Entomol., 39 (1), pp. 162-172
  • Gleser, L.J., Exact power of goodness-of-fit tests of Kolmogorov type for discontinuous distributions (1985) J. Am. Stat. Assoc., 80 (392), pp. 954-958
  • Heuvel, M.J., The effect of rearing temperature on the wing length thorax length, leg length, and ovariole number of the adult mosquito, Aedes aegypti (L.) (1963) Trans. R. Entomol. Soc. Lond., 115 (7), pp. 197-216
  • Hjorth, J.S.U., (1994) Computer Intensive Statistical Methods: Validation, Model Selection, and Bootstrap, , Chapman & Hall, London
  • Honěk, A., Intraspecific variation in body size and fecundity in insects. a general relationship (1993) Oikos, 66, pp. 483-492
  • Huang, Y., Magori, K., Lloyd, A.L., Gould, F., Introducing transgenes into insect populations using combined gene-drive strategies. modeling and analysis (2007) Insect Biochem. Mol. Biol., 37 (10), pp. 1054-1063
  • Jirakanjanakit, N., Leemingsawat, S., Dujardin, J.P., The geometry of the wing of Aedes (Stegomyia) aegypti in isofemale lines through successive generations (2008) Infect. Genet. Evol., 8 (4), pp. 414-421
  • Keeling, M.J., Grenfell, B.T., Disease extinction and community size. modeling the persistence of measles (1997) Science, 275, pp. 65-67
  • Kuhn, T.S., (1962) The Structure of Scientific Revolutions, , University of Chicago Press, Chicago
  • Legros, M., Lloyd, A.L., Huang, Y., Gould, F., Density-dependent intraspecific competition in the larval stage of Aedes aegypti (Diptera: Culicidae). revisiting the current paradigm (2009) J. Med. Entomol., 46 (3), p. 409
  • Lloyd, A.L., Realistic distributions of infectious periods in epidemic models. changing patterns of persistence and dynamics (2001) Theor. Popul. Biol., 60 (1), pp. 59-71
  • Maciá, A., Effects of larval crowding on development time, survival and weight at metamorphosis in Aedes aegypti (Diptera: Culicidae) (2009) Rev. Soc. Entomol. Argent., 68 (1-2), pp. 107-114
  • Magori, K., Legros, M., Puente, M.E., Focks, D.A., Scott, T.W., Lloyd, A.L., Gould, F., Skeeter buster. a stochastic, spatially explicit modeling tool for studying Aedes aegypti population replacement and population suppression strategies (2009) PLoS Negl. Trop. Dis., 3 (9), p. e508
  • Manetsch, T.J., Time-Varying distributed delays and their use in aggregative models of large systems. (1976), pp. 547-553. , IEEE Trans. Syst. Man Cybern. SMC-6; Mittler, J.E., Sulzer, B., Neumann, A.U., Perelson, A.S., Influence of delayed viral production on viral dynamics in HIV-1 infected patients (1998) Math. Biosci., 152 (2), pp. 143-163
  • Otero, M., Schweigmann, N., Solari, H.G., A stochastic spatial dynamical model for Aedes aegypti (2008) Bull. Math. Biol., 70, pp. 1297-1325
  • Padmanabha, H., Bolker, B., Lord, C.C., Rubio, C., Lounibos, L.P., Food availability alters the effects of larval temperature on Aedes aegypti growth (2011) J. Med. Entomol., 48 (5), pp. 974-984
  • Padmanabha, H., Correa, F., Legros, M., Nijhout, H.F., Lord, C., Lounibos, L.P., An eco-physiological model of the impact of temperature on Aedes aegypti life history traits (2012) J. Insect Physiol., 58, pp. 1597-1608
  • (2014), http://www.gutenberg.org/ebooks/1572, 360 BC. Timaeus. Guthemberg project; Popper, K., (1959) The Logic of Scientific Discovery, , Routledge, London
  • Richards, O.W., The rate of the multiplication of yeast at different temperatures (1928) J. Phys. Chem., 32, pp. 1865-1871
  • Romano, J.P., A bootstrap revival of some parametric distance tests (1988) J. Am. Stat. Assoc., 83, pp. 698-708
  • Romeo, A.V., Otero, M.J., de Majo, M.S., Fischer, S., Solari, H.G., Modelling the complex hatching and development of Aedes aegypti in temperated climates (2013) Ecol. Model., 253, pp. 44-55. , http://dx.doi.org/10.1016/j.ecolmodel.2012.12.004
  • Rueda, L.M., Patel, K.J., Axtell, R.C., Stinner, R.E., Temperature-dependent development and survival rates of Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae) (1990) J. Med. Entomol., 27, pp. 892-898
  • Salmon, W.C., The appraisal of theories: Kuhn meets Bayes. (1990), 2, pp. 325-332. , PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association: Symposia and Invited Papers; Sang, J.H., The quantitative nutritional requirements of drosophila melanogaster (1956) J. Exp. Biol., 33, pp. 45-72
  • Sharpe, P.J.H., DeMichele, D.W., Reaction kinetics of poikilotherm development (1977) J. Theor. Biol., 64, pp. 649-670
  • Solari, H.G., Natiello, M.A., (2014), http://dx.doi.org/10.1155/2014/873624, Linear processes in stochastic population dynamics: Theory and application to insect development, Scientific World J., 873624; Southwood, T.R.E., Murdie, G., Yasuno, M., Tonn, R.J., Reader, P.M., Studies on the life budget of Aedes aegypti in Wat Samphaya Bangkok Thailand (1972) Bull. World Health Organ., 46, pp. 211-226
  • Stinner, R.E., Butler, G.D., Bacheler, J.S., Tuttle, C., Simulation of temperature-dependent development in population dynamics models (1975) Can. Entomol., 107 (11), pp. 1167-1174
  • Subra, R., Mouchet, J., The regulation of preimaginal populations of Aedes aegypti (L.) (Diptera: Culicidae) on the Kenya Coast. II. Food as a main regulatory factor (1984) Ann. Trop. Med. Parasitol., 78, pp. 63-70
  • von Bertalanffy, L., Principles and theories of growth. (1960), In: Nowinski, W. (ed), Fundamental Aspects of Normal and Malignant Growth. Elsevier; von Mises, R., (1964) Mathematical Theory of Probability and Statistics, , Academic Press, New York, London
  • Walker, T., Johnson, P.H., Moreira, L.A., Iturbe-Ormaetxe, I., Frentiu, F.D., McMeniman, C.J., Leong, Y.S., Hoffmann, A.A., The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations (2011) Nature, 476 (7361), pp. 450-453
  • Wolkowicz, G.S.K., Xia, H., Ruan, S., Competition in the chemostat. a distributed delay model and its global asymptotic behavior (1997) SIAM J. Appl. Math., 57 (5), pp. 1281-1310
  • Zwietering, M.H., de Koos, J.T., Hasenack, B.E., de Witt, J.C., van 't Riet, K., Modeling of bacterial growth as a function of temperature (1991) Appl. Environ. Microbiol., 57 (4), pp. 1094-1101
  • Zwietering, M.H., de Wit, J.C., Cuppers, H.G., van 't Riet, K., Modeling of bacterial growth with shifts in temperature (1994) Appl. Environ. Microbiol., 60 (1), pp. 204-213

Citas:

---------- APA ----------
Romeo Aznar, V., De Majo, M.S., Fischer, S., Francisco, D., Natiello, M.A. & Solari, H.G. (2015) . A model for the development of Aedes (Stegomyia) aegypti as a function of the available food. Journal of Theoretical Biology, 365, 311-324.
http://dx.doi.org/10.1016/j.jtbi.2014.10.016
---------- CHICAGO ----------
Romeo Aznar, V., De Majo, M.S., Fischer, S., Francisco, D., Natiello, M.A., Solari, H.G. "A model for the development of Aedes (Stegomyia) aegypti as a function of the available food" . Journal of Theoretical Biology 365 (2015) : 311-324.
http://dx.doi.org/10.1016/j.jtbi.2014.10.016
---------- MLA ----------
Romeo Aznar, V., De Majo, M.S., Fischer, S., Francisco, D., Natiello, M.A., Solari, H.G. "A model for the development of Aedes (Stegomyia) aegypti as a function of the available food" . Journal of Theoretical Biology, vol. 365, 2015, pp. 311-324.
http://dx.doi.org/10.1016/j.jtbi.2014.10.016
---------- VANCOUVER ----------
Romeo Aznar, V., De Majo, M.S., Fischer, S., Francisco, D., Natiello, M.A., Solari, H.G. A model for the development of Aedes (Stegomyia) aegypti as a function of the available food. J. Theor. Biol. 2015;365:311-324.
http://dx.doi.org/10.1016/j.jtbi.2014.10.016