Artículo

Karp, R.L.; Pérez Millán, M.; Dasgupta, T.; Dickenstein, A.; Gunawardena, J. "Complex-linear invariants of biochemical networks" (2012) Journal of Theoretical Biology. 311:130-138
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The nonlinearities found in molecular networks usually prevent mathematical analysis of network behaviour, which has largely been studied by numerical simulation. This can lead to difficult problems of parameter determination. However, molecular networks give rise, through mass-action kinetics, to polynomial dynamical systems, whose steady states are zeros of a set of polynomial equations. These equations may be analysed by algebraic methods, in which parameters are treated as symbolic expressions whose numerical values do not have to be known in advance. For instance, an "invariant" of a network is a polynomial expression on selected state variables that vanishes in any steady state. Invariants have been found that encode key network properties and that discriminate between different network structures. Although invariants may be calculated by computational algebraic methods, such as Gröbner bases, these become computationally infeasible for biologically realistic networks. Here, we exploit Chemical Reaction Network Theory (CRNT) to develop an efficient procedure for calculating invariants that are linear combinations of "complexes", or the monomials coming from mass action. We show how this procedure can be used in proving earlier results of Horn and Jackson and of Shinar and Feinberg for networks of deficiency at most one. We then apply our method to enzyme bifunctionality, including the bacterial EnvZ/OmpR osmolarity regulator and the mammalian 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase glycolytic regulator, whose networks have deficiencies up to four. We show that bifunctionality leads to different forms of concentration control that are robust to changes in initial conditions or total amounts. Finally, we outline a systematic procedure for using complex-linear invariants to analyse molecular networks of any deficiency. © 2012 Elsevier Ltd.

Registro:

Documento: Artículo
Título:Complex-linear invariants of biochemical networks
Autor:Karp, R.L.; Pérez Millán, M.; Dasgupta, T.; Dickenstein, A.; Gunawardena, J.
Filiación:Department of Systems Biology, Harvard Medical School, Boston, MA 02115, United States
Departamento de Matemática, FCEN, Universidad de Buenos Aires, Argentina
IMAS-CONICET, C1428EGA Buenos Aires, Argentina
Palabras clave:Bifunctional enzyme; Chemical Reaction Network Theory; Invariant; Robustness; 6 phosphofructo 2 kinase; fructose 2,6 bisphosphatase; chemical reaction; enzyme; molecular analysis; reaction kinetics; theoretical study; article; chemical reaction; Chemical Reaction Network Theory; complex formation; complex linear invariant; enzyme activity; mammal; mass action; mathematical computing; mathematical parameters; molecular dynamics; nonlinear system; osmolarity; priority journal; process development; theory; Bacterial Outer Membrane Proteins; Bacterial Proteins; Escherichia coli; Escherichia coli Proteins; Glycolysis; Models, Biological; Multienzyme Complexes; Phosphofructokinase-2; Trans-Activators; Bacteria (microorganisms); Mammalia
Año:2012
Volumen:311
Página de inicio:130
Página de fin:138
DOI: http://dx.doi.org/10.1016/j.jtbi.2012.07.004
Título revista:Journal of Theoretical Biology
Título revista abreviado:J. Theor. Biol.
ISSN:00225193
CODEN:JTBIA
CAS:6 phosphofructo 2 kinase, 78689-77-7; fructose 2,6 bisphosphatase, 81611-75-8; Bacterial Outer Membrane Proteins; Bacterial Proteins; Escherichia coli Proteins; Multienzyme Complexes; Phosphofructokinase-2, 2.7.1.105; Trans-Activators; envZ protein, E coli, 2.7.3.-; osmolarity response regulator proteins
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00225193_v311_n_p130_Karp

Referencias:

  • Batchelor, E., Goulian, M., Robustness and the cycle of phosphorylation and dephosphorylation in a two-component regulatory system (2003) Proc. Natl. Acad. Sci. U.S.A., 100, pp. 691-696
  • Cornish-Bowden, A., (1995) Fundamentals of Enzyme Kinetics, , Portland Press, London, UK
  • Cox, D., Little, J., O'Shea, D., (1997) Ideals, Varieties and Algorithms, , Springer
  • Craciun, G., Dickenstein, A., Shiu, A., Sturmfels, B., Toric dynamical systems (2009) J. Symb. Comput., 44, pp. 1551-1565
  • Dasgupta, T., Croll, D.H., Owen, J.A., Vander Heiden, M.H., Locasale, J.W., Alon, U., Cantley, L.C., Gunawardena, J., A fundamental trade off in covalent switching and its circumvention in glucose homeostasis submitted for publication; Feinberg, M., Lectures on Chemical Reaction Networks (1979) Lecture Notes, , Mathematics Research Center, University of Wisconsin
  • Feinberg, M., Horn, F., Chemical mechanism structure and the coincidence of the stoichiometric and kinetic subspace (1977) Arch. Rational Mech. Anal., 66, pp. 83-97
  • Gunawardena, J., Chemical Reaction Network Theory for In-Silico Biologists (2003) Lecture Notes, , http://vcp.med.harvard.edu/papers/crnt.pdf, Harvard University
  • Gunawardena, J., Models in systems biology: the parameter problem and the meanings of robustness (2010) Elements of Computational Systems Biology. Wiley Book Series on Bioinformatics, , John Wiley and Sons, Inc, H. Lodhi, S. Muggleton (Eds.)
  • Gunawardena, J., A linear framework for time-scale separation in nonlinear biochemical systems (2012) PLoS ONE, 7, pp. e36321
  • Horn, F., Jackson, R., General mass action kinetics (1972) Arch. Rational Mech. Anal., 47, pp. 81-116
  • Kramer, B.P., Viretta, A.U., Daoud-El-Baba, M., Aubel, D., Weber, W., Fussenegger, M., An engineered epigenetic transgene switch in mammalian cells (2004) Science, 22, pp. 867-870
  • Laurent, M., Kellershohn, N., Multistability: a major means of differentiation and evolution in biological systems (1999) Trends Biochem. Sci., 24, pp. 418-422
  • Manrai, A., Gunawardena, J., The geometry of multisite phosphorylation (2008) Biophys. J., 95, pp. 5533-5543
  • Pérez Millán, M., Dickenstein, A., Shiu, A., Conradi, C., Chemical reaction systems with toric steady states (2012) Bull. Math. Biol., 74, pp. 1027-1065
  • Russo, F.D., Silhavy, T.J., The essential tension: opposed reactions in bacterial two-component regulatory systems (1993) Trends Microbiol., 1, pp. 306-310
  • Shinar, G., Feinberg, M., Structural sources of robustness in biochemical networks (2010) Science, 327, pp. 1389-1391
  • Shinar, G., Milo, R., Martínez, M.R., Alon, U., Input-output robustness in simple bacterial signaling systems (2007) Proc. Natl. Acad. Sci. U.S.A., 104, pp. 19931-19935
  • Shinar, G., Rabinowitz, J.D., Alon, U., Robustness in glyoxylate bypass regulation (2009) PLoS Comp. Biol., 5, pp. e1000297
  • Thomson, M., Gunawardena, J., The rational parameterisation theorem for multisite post-translational modification systems (2009) J. Theor. Biol., 261, pp. 626-636
  • Thomson, M., Gunawardena, J., Unlimited multistability in multisite phosphorylation systems (2009) Nature, 460, pp. 274-277
  • Xu, Y., Gunawardena, J., Realistic enzymology for post-translational modification: zero-order ultrasensitivity revisited (2012) J. Theor. Biol., , http://dx.doi.org/1016/j.jtbi.2012.07.012, in press

Citas:

---------- APA ----------
Karp, R.L., Pérez Millán, M., Dasgupta, T., Dickenstein, A. & Gunawardena, J. (2012) . Complex-linear invariants of biochemical networks. Journal of Theoretical Biology, 311, 130-138.
http://dx.doi.org/10.1016/j.jtbi.2012.07.004
---------- CHICAGO ----------
Karp, R.L., Pérez Millán, M., Dasgupta, T., Dickenstein, A., Gunawardena, J. "Complex-linear invariants of biochemical networks" . Journal of Theoretical Biology 311 (2012) : 130-138.
http://dx.doi.org/10.1016/j.jtbi.2012.07.004
---------- MLA ----------
Karp, R.L., Pérez Millán, M., Dasgupta, T., Dickenstein, A., Gunawardena, J. "Complex-linear invariants of biochemical networks" . Journal of Theoretical Biology, vol. 311, 2012, pp. 130-138.
http://dx.doi.org/10.1016/j.jtbi.2012.07.004
---------- VANCOUVER ----------
Karp, R.L., Pérez Millán, M., Dasgupta, T., Dickenstein, A., Gunawardena, J. Complex-linear invariants of biochemical networks. J. Theor. Biol. 2012;311:130-138.
http://dx.doi.org/10.1016/j.jtbi.2012.07.004