La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


Astudy of spectral laws for helical turbulence in the presence of solid body rotation up to Reynolds numbers Re ~ 1 × 105 and down to Rossby numbers Ro ~ 3 × 10-3 is presented. The forcing function is a fully helical flow that can also be viewed as mimicking the effect of atmospheric convective motions. Variants of a model developed previously by Baerenzung et al. are tested in the helical case against direct numerical simulation (DNS), using data from a run on a grid of 15363 points; its efficiency is also contrasted against a spectral largeeddy simulation (LES) by Chollet and Lesieur, as well as an underresolved DNS. The model including the contribution of helicity to the spectral eddy dissipation and eddy noise behaves best, allowing the recovery of statistical features of the flow. Even if the model is based on isotropic assumptions, the authors demonstrated in a previous study that the small scales of flows at moderate Rossby number can be considered to be isotropic in the range of parameters considered here and that therefore theirmodel is appropriate to treat this kind of flow. An exploration of parameter space is then performed beyond what is feasible today using DNS. At a fixed Reynolds number, lowering the Rossby number leads to a regime of wave-mediated inertial helicity cascades to small scales. However, at a fixed Rossby number, increasing the Reynolds number leads the system to be dominated by turbulent energy exchanges where the role of inertial waves is to weaken the direct cascade of energy while strengthening the large scales. It is found that a useful parameter for partitioning the data is NC = ReRo = U2rms/[vΩ], with Urms, ν, and Ω being the rms velocity, the viscosity, and the rotation rate, respectively. The parameter that determines how much the energy cascade is direct or inverse-in which case the cascade to small scales is predominantly that of helicity-is linked to Ro. © 2011 American Meteorological Society.


Documento: Artículo
Título:Helical turbulence prevails over inertial waves in forced rotating flows at high reynolds and low rossby numbers
Autor:Baerenzung, J.; Rosenberg, D.; Mininni, P.D.; Pouquet, A.
Filiación:National Center for Atmospheric Research, Boulder, CO, United States
INPG, Grenoble, France
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and CONICET, Ciudad Universitaria, Buenos Aires, Argentina
Palabras clave:Model comparison; Numerical analysis/modeling; Turbulence; Convective motions; Eddy dissipation; Energy cascade; Forcing function; Helical flows; Helical turbulence; Helicities; Helicity cascades; Inertial waves; Its efficiencies; Low Rossby number; Model comparison; Parameter spaces; Reynolds; RMS velocities; Rossby numbers; Rotating flow; Rotation rate; Small scale; Solid-body rotation; Statistical features; Turbulent energies; Under-resolved DNS; Internet protocols; Reynolds number; Turbulence; Rotation; atmospheric convection; atmospheric motion; computer simulation; eddy; isotropy; large eddy simulation; numerical method; numerical model; Reynolds number; Rossby number; rotating flow; turbulence
Página de inicio:2757
Página de fin:2770
Título revista:Journal of the Atmospheric Sciences
Título revista abreviado:J. Atmos. Sci.


  • André, J.C., Lesieur, M., Influence of helicity on the evolution of isotropic turbulence at high Reynolds number (1977) J. Fluid Mech., 81, pp. 187-207. , doi:101017/S0022112077001979
  • Anthes, R., Tropical Cyclones: Their Evolution, Struc- ture and Effects. Meteor,Monogr. (1982) Amer. Meteor. Soc., 41, p. 208. , Ed
  • Baerenzung, J., Politano, H., Ponty, Y., Pouquet, A., Spectral modeling of magnetohydrodynamic turbulent flows (2008) Phys. Rev. E, 78, p. 026310. , doi:101103/PhysRevE.78.026310
  • Baerenzung, J., Politano, H., Ponty, Y., Pouquet, A., Spectral modeling of turbulent flows and the role of helicity (2008) Phys. Rev. E, 77, p. 046303. , doi:101103/PhysRevE.77.046303
  • Baerenzung, J., Mininni, P.D., Pouquet, A., Politano, H., Ponty, Y., Spectral modeling of rotating turbulent flows (2010) Phys. Fluids, 22, p. 025104. , doi:101063/1.3292008
  • Brissaud, A., Frisch, U., Léorat, J., Lesieur, M., Mazure, A., Helicity cascades in fully developed isotropic turbulence (1973) Phys. Fluids, 16, pp. 1366-1367. , doi:101063/1.1694520
  • Cambon, C., Scott, J.F., Linear and nonlinear models of anisotropic turbulence (1999) Annu. Rev. Fluid Mech., 31, pp. 1-53. , doi:101146/annurev.fluid31.1.1
  • Canuto, V.M., Dubovikov, M.S., A dynamical model for turbulence. The effect of rotation (1997) Phys. Fluids, 9, pp. 2132-2140. , doi:101063/1.869332
  • Chen, Q., Chen, S., Eyink, G.L., Holm, D.D., Resonant interactions in rotating homogeneous three-dimensional turbulence (2005) J. Fluid Mech., 542, pp. 139-164. , doi:101017/S0022112005006324
  • Chollet, J., Lesieur, M., Parameterization of small scales of three-dimensional isotropic turbulence utilizing spectral closures (1981) J. Atmos. Sci., 38, pp. 2747-2757
  • Delsole, T., Stochastic models of quasigeostrophic turbulence (2004) Surv. Geophys., 25, pp. 107-149. , doi:101023/BGEOP0000028160.75549.0d
  • Dubrulle, B., Valdettaro, L., Consequences of rotation in energetics of accretion disks (1992) Astron. Astrophys., 263, pp. 387-400
  • Etling, D., Some aspects of atmospheric flows (1985) Contrib. Atmos. Phys., 58, pp. 88-100
  • Frederiksen, J.S., Subgrid-scale parameterizations of eddy- topographic force, eddy viscosity, and stochastic backscatter for flow over topography (1999) J. Atmos. Sci., 56, pp. 1481-1494
  • Frederiksen, J.S., Kepert, S.M., Dynamical subgrid-scale parameterizations from direct numerical simulations (2006) J. Atmos. Sci., 63, pp. 3006-3019
  • Frederiksen, J.S., O'Kane, T.J., Entropy, closures and subgrid modeling (2008) Entropy, 10, pp. 635-683. , doi:103390/e10040635
  • Frisch, U., Scholl, H., She, Z., Sulem, P.-L., A new large- scale instability in three-dimensional incompressible flows lacking parity invariance (1984) Fluid Dyn. Res., 3, pp. 295-298
  • Galtier, S., Weak inertial-wave turbulence theory (2003) Phys. Rev. E, 68, p. 015301. , doi:101103/PhysRevE.68.015301
  • Glebova, E.S., Levina, G.V., Naumov, A.D., Trosnikov, I.V., The helical feature calculation for the velocity field of a developing tropical cyclone (2009) Russ. Meteor. Hydrol., 34, pp. 572-580
  • Holm, D.D., Kerr, R., Transient vortex events in the initial value problem for turbulence (2002) Phys. Rev. Lett., 88, p. 244501. , doi:101103/PhysRevLett.88.244501
  • Hunt, J.C.R., Hussain, F., A note on velocity, vorticity and helicity of inviscid fluid elements (1991) J. Fluid Mech., 229, pp. 569-587. , doi:101017/S0022112091003178
  • Kraichnan, R.H., Helical turbulence and absolute equilibrium (1973) J. Fluid Mech., 59, pp. 745-752. , doi:101017/S0022112073001837
  • Kraichnan, R.H., Panda, R., Depression of nonlinearity in decaying isotropic turbulence (1988) Phys. Fluids, 31, pp. 2395-2397. , doi:101063/1.866591
  • Krause, F., Rüdiger, G., On the Reynolds stresses in mean field hydrodynamics. I. Incompressible homogeneous isotropic turbulence (1974) Astron. Nachr., 295, pp. 93-99
  • Krstulovic, G., Mininni, P.D., Brachet, M.E., Pouquet, A., Cascades, thermalization, and eddy viscosity in helical Galerkin truncated Euler flows (2009) Phys. Rev. E, 79, p. 056304. , doi:101103/PhysRevE.79.056304
  • Kurien, S., Taylor, M.A., Matsumoto, T., Cascade time scales for energy and helicity in homogeneous isotropic tur- bulence (2004) Phys. Rev. E, 69, p. 066313. , doi:101103/PhysRevE.69.066313
  • Lautenschlager, M., Eppel, D., Thacker, W., Subgrid parametrization in helical flows (1988) Beitr. Phys. Atmos., 61, pp. 87-97
  • Leith, C.E., Atmospheric predictability and two-dimensional turbulence (1971) J. Atmos. Sci., 28, pp. 145-161
  • Li, Y., Meneveau, C., Chen, S., Eyink, G.L., Subgrid-scale modeling of helicity and energy dissipation in helical turbulence (2006) Phys. Rev. E, 74, p. 026310. , doi:101103/PhysRevE.74.026310
  • Lilly, D.K., The structure, energetics and propagation of rotating convective storms. Part II: Helicity and storm stabi- lization (1986) J. Atmos. Sci., 43, pp. 126-140
  • Majda, A.J., Timofeyev, I., Vanden-Eijnden, E., Sys- tematic strategies for stochastic mode reduction in climate (2003) J. Atmos. Sci., 60, pp. 1705-1722
  • Markowski, P.M., Straka, J.M., Rasmussen, E.N., Blanchard, D.O., Variability of storm-relative helicity during VORTEX (1998) Mon. Wea. Rev., 126, pp. 2959-2971
  • Markowski, P.M., Straka, J.M., Rasmussen, E.N., Tornadogenesis resulting from the transport of circulation by a downdraft: Idealized numerical simulations (2003) J. Atmos. Sci., 60, pp. 795-823
  • Meneveau, C., Katz, J., Scale-invariance and turbulence models for large-eddy simulation (2000) Annu. Rev. Fluid Mech., 32, pp. 1-32. , doi:101146/annurev.fluid32.1.1
  • Mininni, P.D., Pouquet, A., Helicity cascades in rotating turbulence (2009) Phys. Rev. E, 79, p. 026304. , doi:101103/PhysRevE.79.026304
  • Mininni, P.D., Pouquet, A., Rotating helical turbulence. I. Global evolution and spectral behavior (2010) Phys. Fluids, 22, p. 035105. , doi:101063/1.3358466
  • Mininni, P.D., Pouquet, A., Rotating helical turbulence. II. Intermitt- ency, scale invariance, and structures (2010) Phys. Fluids, 22, p. 035106. , doi:101063/1.3358471
  • Mininni, P.D., Alexakis, A., Pouquet, A., Scale interactions and scaling laws in rotating flows at moderate Rossby numbers and large Reynolds numbers (2009) Phys. Fluids, 21, 015108, , doi:101063/1.3064122
  • Moffatt, H.K., The degree of knottedness of tangled vortex lines (1969) J. Fluid Mech., 35, pp. 117-129. , doi:101017/S0022112069000991
  • Moffatt, H.K., Tsinober, A., Helicity in laminar and turbulent flow (1992) Annu. Rev. Fluid Mech., 24, pp. 281-312. , doi:101146/annurev.fl24.010192.001433
  • Molinari, J., Vollaro, D., Distribution of helicity, CAPE, and shear in tropical cyclones (2010) J. Atmos. Sci., 67, pp. 274-284
  • Nolan, D.S., A new scaling for tornado-like vortices (2005) J. Atmos. Sci., 62, pp. 2639-2645
  • Nolan, D.S., Farrell, B.F., The structure and dynamics of tornado- like vortices (1999) J. Atmos. Sci., 56, pp. 2908-2936
  • Orszag, S., Statistical theory of turbulence (1977) Les Houches Summer School, pp. 237-374. , J. L. Peube and R. Baliand, Eds., Gordon and Breach
  • Palmer, T.N., A nonlinear dynamical perspective on model error: A proposal for non-local stochastic-dynamic parame- trization in weather and climate prediction models (2001) Quart. J. Roy. Meteor. Soc., 127, pp. 279-304
  • Pouquet, A., Fournier, J., Sulem, P.-L., Is helicity relevant for large scale steady state three-dimensional turbulence? J (1978) Phys. Lett., 39, pp. 199-203
  • Rosenberg, D., Fournier, A., Fischer, P., Pouquet, A., Geophysical-astrophysical spectral-element adaptive refinement (GASpAR): Object-oriented h-adaptive fluid dynamics simula- tion (2006) J. Comput. Phys., 215, pp. 59-80. , doi:101016/
  • Rosenberg, D., Pouquet, A., Mininni, P.D., Adaptive mesh re- finement with spectral accuracy for magnetohydrodynamics in two space dimensions (2007) New J. Phys., 9, p. 304. , doi:101088/1367-2630/9/8/304
  • Rotunno, R., An investigation of a three-dimensional asymmetric vortex (1984) J. Atmos. Sci., 41, pp. 283-298
  • Rotunno, R., Klemp, J., On the rotation and propagation of simulated supercell thunderstorms (1985) J. Atmos. Sci., 42, pp. 271-292
  • Sagaut, P., Cambon, C., (2008) Homogeneous Turbulence Dynamics, p. 463. , Cambridge University Press
  • Smagorinsky, J., General circulation experiments with the primitive equations (1963) Mon. Wea. Rev., 91, pp. 99-164
  • Smith, L.M., Waleffe, F., Transfer of energy to two- dimensional large scales in forced, rotating three-dimensional turbulence (1999) Phys. Fluids, 11, pp. 1608-1622. , doi:101063/1.870022
  • Smith, L.M., Lee, Y., On near resonances and symmetry breaking in forced rotating flows at moderate Rossby number (2005) J. Fluid Mech., 535, pp. 111-142. , doi:101017/S0022112005004660
  • Teitelbaum, T., Mininni, P., Effect of helicity and rotation on the free decay of turbulent flows (2009) Phys. Rev. Lett., 103, p. 014501. , doi:101103/PhysRevLett.103.014501
  • Tran, C.V., Bowman, J.C., On the dual cascade in two- dimensional turbulence (2003) Physica D, 176, pp. 242-255. , doi:101016/S0167-2789(02)00771-6
  • Wicker, L.J., Wilhelmson, R.B., Simulation and analysis of tornado development and decay within a three-dimensional supercell thunderstorm (1995) J. Atmos. Sci., 52, pp. 2675-2704
  • Yokoi, N., Yoshizawa, A., Statistical analysis of the ef- fects of helicity in inhomogeneous turbulence (1993) Phys. Fluids, 5, pp. 464-477. , doi:101063/1.858869
  • Zhou, Y., A phenomenological treatment of rotating turbu- lence (1995) Phys. Fluids, 7, pp. 2092-2094. , doi:101063/1.868457


---------- APA ----------
Baerenzung, J., Rosenberg, D., Mininni, P.D. & Pouquet, A. (2011) . Helical turbulence prevails over inertial waves in forced rotating flows at high reynolds and low rossby numbers. Journal of the Atmospheric Sciences, 68(11), 2757-2770.
---------- CHICAGO ----------
Baerenzung, J., Rosenberg, D., Mininni, P.D., Pouquet, A. "Helical turbulence prevails over inertial waves in forced rotating flows at high reynolds and low rossby numbers" . Journal of the Atmospheric Sciences 68, no. 11 (2011) : 2757-2770.
---------- MLA ----------
Baerenzung, J., Rosenberg, D., Mininni, P.D., Pouquet, A. "Helical turbulence prevails over inertial waves in forced rotating flows at high reynolds and low rossby numbers" . Journal of the Atmospheric Sciences, vol. 68, no. 11, 2011, pp. 2757-2770.
---------- VANCOUVER ----------
Baerenzung, J., Rosenberg, D., Mininni, P.D., Pouquet, A. Helical turbulence prevails over inertial waves in forced rotating flows at high reynolds and low rossby numbers. J. Atmos. Sci. 2011;68(11):2757-2770.