Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The present work focuses on theoretically research on the spontaneous emission and the energy transfer process between two single optical emitters placed close to a graphene coated wire. The localized surface plasmons (LSPs) supported by the structure provide decay channels which lead to an enhancement of the emission and radiation decay rates as well as an improvement in the energy transfer between two dipole emitters. Modifications resulting from varying the orientation of dipole moments in these quantities are shown. We find that the radiation and the energy transfer efficiencies can be largely reduced at a specific frequency depending on the emitter location. By dynamically tuning the chemical potential of graphene coating, the spectral region where the dipole–field interaction is enhanced can be chosen over a wide range. © 2018 Elsevier Ltd

Registro:

Documento: Artículo
Título:Enhancement, suppression of the emission and the energy transfer by using a graphene subwavelength wire
Autor:Cuevas, M.
Filiación:Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Facultad de Ingeniería y Tecnología Informática, Universidad de Belgrano, Villanueva 1324, C1426BMJ, Buenos Aires, Argentina
Grupo de Electromagnetismo Aplicado, Departamento de Física, FCEN, Universidad de Buenos Aires and IFIBA, Ciudad Universitaria, Pabellón I, C1428EHA, Buenos Aires, Argentina
Palabras clave:Dipole–dipole interaction; Graphene; Spontaneous emission; Surface plasmon; Decay (organic); Energy transfer; Spontaneous emission; Surface plasmons; Dipole interaction; Energy transfer efficiency; Energy transfer process; Field interactions; Graphene coatings; Localized surface plasmon; Specific frequencies; Sub-wavelength wires; Graphene; research; spectral analysis; theoretical study; wavelength
Año:2018
Volumen:214
Página de inicio:8
Página de fin:17
DOI: http://dx.doi.org/10.1016/j.jqsrt.2018.04.020
Título revista:Journal of Quantitative Spectroscopy and Radiative Transfer
Título revista abreviado:J. Quant. Spectrosc. Radiat. Transf.
ISSN:00224073
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00224073_v214_n_p8_Cuevas

Referencias:

  • Purcell, E.M., (1946) Phys Rev, 69, p. 674
  • Carminati, R., Caze, A., Cao, A., Peragut, A., Krachmalnicoff, V., Pierrat, R., Wil, D., (2015) Surf Sci Rep, 70, pp. 1-41
  • Muskens, O.L., Giannini, V., Sánchez-Gil, J.A., Rivas, J.G., (2007) Nano Lett, 7. , 2871–5
  • Rogobete, L., Schniepp, H., Sandoghdar, V., Henkel, C., (2003) Opt Lett, 28, pp. 1623-1625
  • Tame, M.S., McEnery, K.R., Özdemir, K., Lee, J., Maier, S.A., Kim, M.S., (2013) Nat Phys, 9, pp. 329-340
  • Sokhoyan, R., Atwater, H.A., (2013) Optic Express, 21. , 32279–90
  • Ginzburg, P., Roth, D.J., Nasir, M.E., Segovia, P., Krasavin, A.V., Levitt, J., Hirvonen, L.M., Zayats, A.V., (2017) Light, 6, p. e16273
  • Mahmoud, A.M., Liberal, I., Engueta, N., (2017) Opt Mater Express, 7, pp. 415-424
  • Karanikolas, V., Marocico, C.A., Bradley, A.L., (2014) Phys Rev A, 89, p. 063817
  • Martín-Cano, D., Martín-Moreno, L., García-Vidal, F.J., Moreno, E., (2010) Nano Lett, 10, pp. 3129-3134
  • Andrew, P., Barnes, W.L., (2004) Science, 306, pp. 1002-1005
  • Akselrod, G.M., Argyropoulos, C., Hoang, T.B., Ciraci, C., Fang, C., Huang, J., Smith, D.R., Mikkelsen, M.H., (2014) Nat Photonics, 8, pp. 835-840
  • Oulton, R.F., Sorger, V.J., Zentgraf, T., Ma, R., Gladden, C., Dai, L., Bartal, G., Zhang, X., (2009) Nature, 461, pp. 629-632
  • Akimov, A.V., Mukherjee, A., Yu, C.L., Chang, D.E., Zibrov, A.S., Hemmer, P.R., Park, H., Lukin, M.D., (2007) Nature, 450, pp. 402-406
  • Yang, X., Li, Y., Lou, Z., Chen, Q., Li, B., (2018) ACS Appl Energy Mater, 1, pp. 278-283
  • Jablan, J., Soljacic, M., Buljan, H., (2013) Proc IEEE, 101, pp. 1689-1704
  • Xia, F., (2013) Nat Photonics, 7, p. 420
  • Christensen, T., From Classical to Quantum Plasmonics in Three and Two Dimensions (2017), Springer; Farmani, A., Zarifkar, A., Sheikhi, M.H., Miri, M., (2017) Superlattices Microstruct, 112, pp. 404-414
  • Moradi, A., (2018) J Appl Phys, 123, p. 043103
  • Cheng, Y., Yang, J., Lu, Q., Tang, H., Huang, M., (2016) Sensors, 16, p. 773
  • Saavedra, J.R.M., de Abajo F. J., G., (2018) Appl Phys Lett, 112, p. 061107
  • Raether, H., Surface Plasmons on Smooth and Rough Surfaces and on Gratings (1988), Springer–Verlag Berlin; Maier, S.A., Plasmonics: Fundamentals and Applications (2007), Springer New York; Cuevas, M., Depine, R.A., (2009) Phys Rev Lett, 103, p. 097401
  • Zeller, M., Cuevas, M., Depine, R.A., (2011) JOSA B, 28, pp. 2042-2047
  • Farmani, A., Miri, M., Sheikhi, M.H., (2017) JOSA B, 34, pp. 1097-1106
  • Cuevas, M., (2016) Phys Lett A, 380, pp. 4027-4031
  • Slipchenko, T.M., Nesterov, M.L., Martin-Moreno, L., Nikitin, A.Y., (2013) J Opt, 15, p. 114008
  • Ferreira, A., Peres, N.M.R., (2012) Phys Rev B, 86, p. 205401
  • Biehs, S.A., Agarwal, G.S., (2013) Appl Phys Lett, 103, p. 243112
  • Huidobro, P.A., Nikitin, A.Y., Gonzalez-Ballestero, C., Martín-Moreno, L., García-Vidal, F.J., (2012) Phys Rev B, 85, p. 155438
  • Bian, T., Chang, R., Leung, P.T., (2016) Plasmonics, 11, pp. 1239-1246
  • Karanikolas, V.D., Marocico, C.A., Bradley, A.L., (2016) Phys Rev B, 93, p. 035426
  • Cuevas, M., (2016) J Opt, 18, p. 105003
  • Cuevas, M., (2018) J Quant Spectrosc Radiat Transfer, 206, pp. 157-162
  • Wang, W., Li, B.H., Stassen, E., Mortensen, N.A., Christensen, J., (2016) Nanoscale, 8, pp. 3809-3815
  • Cuevas, M., (2017) J Quant Spectrosc Radiat Transfer, 200, pp. 190-197
  • Arslanagic, S., Ziolkowski, R.W., (2010) J Opt, 12, p. 024014. , (9pp)
  • Abramowitz, M., Stegun, I.A., Handbook of Mathematical Functions (1965), Dover New York; Novotny, L., Hecht, B., Principles of Nano–Optics (2006), Cambridge University Press New York; Martín-Moreno, L., de Abajo F. J., G., García-Vidal, F.J., (2015) Phys Rev Lett, 115, p. 173601
  • Merano, M., (2016) Phys Rev A, 93, p. 013832
  • Falkovsky, F.A., (2008) Phys Usp, 51. , 887–97
  • Milkhailov, S.A., Siegler, K., (2007) Phys Rev Lett, 99, p. 016803
  • Falkovsky, L.A., Pershoguba, S.S., (2007) Phys Rev B, 76, p. 153410
  • Cuevas, M., Riso, M., Depine, R.A., (2016) J Quant Spectrosc Radiat Transfer, 173, pp. 26-33
  • Chen, P.Y., Alu, A., (2011) ACS Nano, 5, pp. 5855-5863
  • Naserpour, M., Zapata-Rodríguez, C.J., Vukovic, S.M., Pashaeiadl, H., Belic, M.R., (2017) Sci Rep, 7, p. 12186
  • Mertens, H., Koenderink, A.F., Polman, A., (2007) Phys Rev B, 76, p. 115123
  • Mason, D.R., Menabde, S.G., Park, N., (2014) Opt Express, 847, p. 201871
  • Hanson, G.W., (2008) J App Phys, 103, p. 064302
  • Merano, M., (2016) Opt Lett, 41, pp. 2668-2671
  • Farmani, A., Miri, M., Sheikhi, M.H., (2017) IEEE Photonics Technol Lett, 30, pp. 153-156

Citas:

---------- APA ----------
(2018) . Enhancement, suppression of the emission and the energy transfer by using a graphene subwavelength wire. Journal of Quantitative Spectroscopy and Radiative Transfer, 214, 8-17.
http://dx.doi.org/10.1016/j.jqsrt.2018.04.020
---------- CHICAGO ----------
Cuevas, M. "Enhancement, suppression of the emission and the energy transfer by using a graphene subwavelength wire" . Journal of Quantitative Spectroscopy and Radiative Transfer 214 (2018) : 8-17.
http://dx.doi.org/10.1016/j.jqsrt.2018.04.020
---------- MLA ----------
Cuevas, M. "Enhancement, suppression of the emission and the energy transfer by using a graphene subwavelength wire" . Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 214, 2018, pp. 8-17.
http://dx.doi.org/10.1016/j.jqsrt.2018.04.020
---------- VANCOUVER ----------
Cuevas, M. Enhancement, suppression of the emission and the energy transfer by using a graphene subwavelength wire. J. Quant. Spectrosc. Radiat. Transf. 2018;214:8-17.
http://dx.doi.org/10.1016/j.jqsrt.2018.04.020