Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Key points: The present study examines dendritic integrative processes that occur in many central neurons but have been challenging to study in vivo in the vertebrate brain. The Mauthner cell of goldfish receives auditory and visual information via two separate dendrites, providing a privileged scenario for in vivo examination of dendritic integration. The results show differential attenuation properties in the Mauthner cell dendrites arising at least partly from differences in cable properties and the nonlinear behaviour of the respective dendritic membranes. In addition to distinct modality-dependent membrane specialization in neighbouring dendrites of the Mauthner cell, we report cross-modal dendritic interactions via backpropagating postsynaptic potentials. Broadly, the results of the present study provide an exceptional example for the processing power of single neurons. Abstract: Animals process multimodal information for adaptive behavioural decisions. In fish, evasion of a diving bird that breaks the water surface depends on integrating visual and auditory stimuli with very different characteristics. How do neurons process such differential sensory inputs at the dendritic level? For that, we studied the Mauthner cells (M-cells) in the goldfish startle circuit, which receive visual and auditory inputs via two separate dendrites, both accessible for in vivo recordings. We investigated whether electrophysiological membrane properties and dendrite morphology, studied in vivo, play a role in selective sensory processing in the M-cell. The results obtained show that anatomical and electrophysiological differences between the dendrites combine to produce stronger attenuation of visually evoked postsynaptic potentials (PSPs) than to auditory evoked PSPs. Interestingly, our recordings showed also cross-modal dendritic interaction because auditory evoked PSPs invade the ventral dendrite (VD), as well as the opposite where visual PSPs invade the lateral dendrite (LD). However, these interactions were asymmetrical, with auditory PSPs being more prominent in the VD than visual PSPs in the LD. Modelling experiments imply that this asymmetry is caused by active conductances expressed in the proximal segments of the VD. The results obtained in the present study suggest modality-dependent membrane specialization in M-cell dendrites suited for processing stimuli of different time domains and, more broadly, provide a compelling example of information processing in single neurons. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society

Registro:

Documento: Artículo
Título:Differential processing in modality-specific Mauthner cell dendrites
Autor:Medan, V.; Mäki-Marttunen, T.; Sztarker, J.; Preuss, T.
Filiación:Department of Psychology, Hunter College, City University of New York, New York, NY, United States
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Buenos Aires, Argentina
CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
Department of Signal Processing, Tampere University of Technology, Tampere, Finland
Institute of Clinical Medicine, University of Oslo, OUS, Nydalen, Oslo, Norway
Simula Research Laboratory, Lysaker, Norway
Palabras clave:cross-modal dendritic interaction; dendritic specialization; Mauthner cell; adult; animal cell; animal experiment; Article; auditory evoked potential; cell interaction; cell specificity; cell structure; controlled study; dendrite; Mauthner cell; neurophysiology; nonhuman; postsynaptic potential; priority journal; visual evoked potential
Año:2018
Volumen:596
Número:4
Página de inicio:667
Página de fin:689
DOI: http://dx.doi.org/10.1113/JP274861
Título revista:Journal of Physiology
Título revista abreviado:J. Physiol.
ISSN:00223751
CODEN:JPHYA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00223751_v596_n4_p667_Medan

Referencias:

  • Angelo, K., Margrie, T.W., Population diversity and function of hyperpolarization-activated current in olfactory bulb mitral cells (2011) Sci Rep, 1, p. 50
  • Bartelmez, G.W., Mauthner's cell and the nucleus motorius tegmenti (1915) J Comp Neurol, pp. 87-128
  • Bodian, D., The structure of the vertebrate synapse. A study of the axon endings on mauthner's cell and neighboring centers in the goldfish (1937) J Comp Neurol, 68, pp. 117-159
  • Bodian, D., Introductory survey of neurons (1952) Cold Spring Harb Symp Quant Biol, 17, pp. 1-13
  • Bodnar, D.A., Bass, A.H., Temporal coding of concurrent acoustic signals in auditory midbrain (1997) J Neurosci, 17, pp. 7553-7564
  • Branco, T., Häusser, M., The single dendritic branch as a fundamental functional unit in the nervous system (2010) Curr Opin Neurobiol, 20, pp. 494-502
  • Branco, T., Häusser, M., Synaptic integration gradients in single cortical pyramidal cell dendrites (2011) Neuron, 69, pp. 885-892
  • Buhry, L., Pace, M., Saïghi, S., Global parameter estimation of an Hodgkin-Huxley formalism using membrane voltage recordings: Application to neuro-mimetic analog integrated circuits (2012) Neurocomputing, 81, pp. 75-85
  • Canfield, J.G., Temporal constraints on visually directed C-start responses: behavioral and physiological correlates (2003) Brain Behav Evol, 61, pp. 148-158
  • Canfield, J.G., Functional evidence for visuospatial coding in the Mauthner neuron (2006) Brain Behav Evol, 67, pp. 188-202
  • Carnevale, N.T., Hines, M.L., (2006) The NEURON Book, , &, Cambridge University Press, New York, NY
  • Carnevale, N.T., Johnston, D., Electrophysiological characterization of remote chemical synapses (1982) J Neurophysiol, 47, pp. 606-621
  • Carnevale, N.T., Tsai, K.Y., Claiborne, B.J., Brown, T.H., Comparative electrotonic analysis of three classes of rat hippocampal neurons (1997) J Neurophysiol, 78, pp. 703-720
  • Cordova, M.S., Braun, C.B., The use of anesthesia during evoked potential audiometry in goldfish (Carassius auratus) (2007) Brain Res, 1153, pp. 78-83
  • Cuntz, H., Remme, M.W.H., Torben-Nielsen, B., (2013) The Computing Dendrite: From Structure to Function, , Springer Science & Business Media, New York, NY
  • Curti, S., Pereda, A.E., Functional specializations of primary auditory afferents on the Mauthner cells: interactions between membrane and synaptic properties (2010) J Physiol Paris, 104, pp. 203-214
  • Curtin, P.C.P., Medan, V., Neumeister, H., Bronson, D.R., Preuss, T., The 5-HT5A receptor regulates excitability in the auditory startle circuit: functional implications for sensorimotor gating (2013) J Neurosci, 33, pp. 10011-10020
  • D'Alessandro, G., (2007) Neuron_Morpho plugin for ImageJ, , http://www.personal.soton.ac.uk/dales/morpho/, Neuron_Morpho plugin Homepage., [Accessed June 15, 2017]
  • De Winter, J.C.F., (2013) Using the Student's t-test with extremely small sample sizes, , http://connection.ebscohost.com/c/articles/90455014/using-students-t-test-extremely-small-sample-sizes, [Accessed February 14, 2017]
  • Diamond, J., Huxley, A.F., The activation and distribution of GABA and L-glutamate receptors on goldfish Mauthner neurones: an analysis of dendritic remote inhibition (1968) J Physiol, 194, pp. 669-723
  • Diamond, J., Roper, S., Yasargil, G.M., The membrane effects, and sensitivity to strychnine, of neural inhibition of the Mauthner cell, and its inhibition by glycine and GABA (1973) J Physiol, 232, pp. 87-111
  • Dunn, T.W., Gebhardt, C., Naumann, E.A., Riegler, C., Ahrens, M.B., Engert, F., Del Bene, F., Neural circuits underlying visually evoked escapes in larval zebrafish (2016) Neuron, 89, pp. 613-628
  • Emri, Z., Antal, K., Gulyás, A.I., Megías, M., Freund, T.F., Electrotonic profile and passive propagation of synaptic potentials in three subpopulations of hippocampal CA1 interneurons (2001) Neuroscience, 104, pp. 1013-1026
  • Eyal, G., Mansvelder, H.D., de Kock, C.P.J., Segev, I., Dendrites impact the encoding capabilities of the axon (2014) J Neurosci, 34, pp. 8063-8071
  • Faber, D.S., Fetcho, J.R., Korn, H., Neuronal networks underlying the escape response in goldfish. General implications for motor control (1989) Ann NY Acad Sci, 563, pp. 11-33
  • Faber, D.S., Korn, H., (1978) Neurobiology of the Mauthner cell, , &, eds. (, First Edition, Raven Press, Philadelphia, PA
  • Faber, D.S., Korn, H., Transmission at a central inhibitory synapse. I. Magnitude of unitary postsynaptic conductance change and kinetics of channel activation (1982) J Neurophysiol, 48, pp. 654-678
  • Faber, D.S., Korn, H., Instantaneous inward rectification in the Mauthner cell: a postsynaptic booster for excitatory inputs (1986) Neuroscience, 19, pp. 1037-1043
  • Fetcho, J.R., Higashijima, S., McLean, D.L., Zebrafish and motor control over the last decade (2008) Brain Res Rev, 57, pp. 86-93
  • Flores, C.E., Ene, S., Pereda, A.E., An immunochemical marker for goldfish Mauthner cells (2008) J Neurosci Methods, 175, pp. 64-69
  • Flores, C.E., Li, X., Bennett, M.V., Nagy, J.I., Pereda, A.E., Interaction between connexin35 and zonula occludens-1 and its potential role in the regulation of electrical synapses (2008) Proc Natl Acad Sci USA, 105, pp. 12545-12550
  • Funch, P.G., Faber, D.S., Action-potential propagation and orthodromic impulse initiation in Mauthner axon (1982) J Neurophysiol, 47, pp. 1214-1231
  • Furshpan, E.J., Furukawa, T., Intracellular and extracellular responses of the several regions of the Mauthner cell of the goldfish (1962) J Neurophysiol, 25, pp. 732-771
  • Furukawa, T., Synaptic interaction at the mauthner cell of goldfish (1966) Prog Brain Res, 21, pp. 44-70
  • Furukawa, T.L., Furshpan, E.J., Two inhibitory mechanisms in the Mauthner neurons of goldfish (1963) J Neurophysiol, 26, pp. 140-176
  • Gabbiani, F., Krapp, H.G., Laurent, G., Computation of object approach by a wide-field, motion-sensitive neuron (1999) J Neurosci, 19, pp. 1122-1141
  • Golding, N.L., Mickus, T.J., Katz, Y., Kath, W.L., Spruston, N., Factors mediating powerful voltage attenuation along CA1 pyramidal neuron dendrites (2005) J Physiol (Lond), 568, pp. 69-82
  • Goldstein, S.S., Rall, W., Changes of action potential shape and velocity for changing core conductor geometry (1974) Biophys J, 14, pp. 731-757
  • Gulledge, A.T., Kampa, B.M., Stuart, G.J., Synaptic integration in dendritic trees (2005) J Neurobiol, 64, pp. 75-90
  • Harnett, M.T., Makara, J.K., Spruston, N., Kath, W.L., Magee, J.C., Synaptic amplification by dendritic spines enhances input cooperativity (2012) Nature, 491, pp. 599-602
  • Holmes, W.R., Rall, W., Electrotonic length estimates in neurons with dendritic tapering or somatic shunt (1992) J Neurophysiol, 68, pp. 1421-1437
  • Holmes, W.R., Segev, I., Rall, W., Interpretation of time constant and electrotonic length estimates in multicylinder or branched neuronal structures (1992) J Neurophysiol, 68, pp. 1401-1420
  • Ishikawa, T., Shimuta, M., Häusser, M., Multimodal sensory integration in single cerebellar granule cells in vivo (2015) eLife, 4
  • Jaffe, D.B., Carnevale, N.T., Passive normalization of synaptic integration influenced by dendritic architecture (1999) J Neurophysiol, 82, pp. 3268-3285
  • Jia, H., Rochefort, N.L., Chen, X., Konnerth, A., Dendritic organization of sensory input to cortical neurons in vivo (2010) Nature, 464, pp. 1307-1312
  • Johnston, D., Narayanan, R., Active dendrites: colorful wings of the mysterious butterflies (2008) Trends Neurosci, 31, pp. 309-316
  • Koch, C., Poggio, T., Torre, V., Nonlinear interactions in a dendritic tree: localization, timing, and role in information processing (1983) Proc Natl Acad Sci USA, 80, pp. 2799-2802
  • Koch, C., Segev, I., The role of single neurons in information processing (2000) Nat Neurosci, 3, pp. 1171-1177
  • Korn, H., Faber, D.S., Organizational and cellular mechanisms underlying chemical inhibition of a vertebrate neuron (1983) Prog Brain Res, 58, pp. 165-174
  • Korn, H., Faber, D.S., The Mauthner cell half a century later: a neurobiological model for decision-making (2005) Neuron, 47, pp. 13-28
  • Korn, H., Triller, A., Faber, D.S., Structural correlates of recurrent collateral interneurons producing both electrical and chemical inhibitions of the Mauthner cell (1978) Proc R Soc Lond B Biol Sci, 202, pp. 533-538
  • Lacoste, A.M.B., Schoppik, D., Robson, D.N., Haesemeyer, M., Portugues, R., Li, J.M., Randlett, O., Schier, A.F., A convergent and essential interneuron pathway for Mauthner-cell-mediated escapes (2015) Curr Biol, 25, pp. 1526-1534
  • Lin, J.W., Faber, D.S., Synaptic transmission mediated by single club endings on the goldfish Mauthner cell. II. Plasticity of excitatory postsynaptic potentials (1988) J Neurosci, 8, pp. 1313-1325
  • Linden, D.J., The return of the spike: postsynaptic action potentials and the induction of LTP and LTD (1999) Neuron, 22, pp. 661-666
  • London, M., Häusser, M., Dendritic computation (2005) Annu Rev Neurosci, 28, pp. 503-532
  • London, M., Meunier, C., Segev, I., Signal transfer in passive dendrites with nonuniform membrane conductance (1999) J Neurosci, 19, pp. 8219-8233
  • Medan, V., Preuss, T., Dopaminergic-induced changes in Mauthner cell excitability disrupt prepulse inhibition in the startle circuit of goldfish (2011) J Neurophysiol, 106, pp. 3195-3204
  • Medan, V., Preuss, T., The Mauthner-cell circuit of fish as a model system for startle plasticity (2014) J Physiol Paris, 108, pp. 129-140
  • Mu, Y., Li, X., Zhang, B., Du, J., Visual input modulates audiomotor function via hypothalamic dopaminergic neurons through a cooperative mechanism (2012) Neuron, 75, pp. 688-699
  • Nakajima, Y., Fine structure of the synaptic endings on the Mauthner cell of the goldfish (1974) J Comp Neurol, 156, pp. 379-402
  • Neumeister, H., Szabo, T.M., Preuss, T., Behavioral and physiological characterization of sensorimotor gating in the goldfish startle response (2008) J Neurophysiol, 99, pp. 1493-1502
  • Palmer, L.M., Mensinger, A.F., Effect of the anesthetic tricaine (MS-222) on nerve activity in the anterior lateral line of the oyster toadfish, Opsanus tau (2004) J Neurophysiol, 92, pp. 1034-1041
  • Pereda, A., O'Brien, J., Nagy, J.I., Bukauskas, F., Davidson, K.G., Kamasawa, N., Yasumura, T., Rash, J.E., Connexin35 mediates electrical transmission at mixed synapses on Mauthner cells (2003) J Neurosci, 23, pp. 7489-7503
  • Pereda, A.E., Curti, S., Hoge, G., Cachope, R., Flores, C.E., Rash, J.E., Gap junction-mediated electrical transmission: regulatory mechanisms and plasticity (2013) Biochim Biophys Acta, 1828, pp. 134-146
  • Pereda, A.E., Rash, J.E., Nagy, J.I., Bennett, M.V.L., Dynamics of electrical transmission at club endings on the Mauthner cells (2004) Brain Res Brain Res Rev, 47, pp. 227-244
  • Peron, S.P., Jones, P.W., Gabbiani, F., Precise subcellular input retinotopy and its computational cConsequences in an identified visual interneuron (2009) Neuron, 63, pp. 830-842
  • Petersen, C.C.H., Whole-cell recording of neuronal membrane potential during behavior (2017) Neuron, 95, pp. 1266-1281
  • Preuss, T., Faber, D.S., Central cellular mechanisms underlying temperature-dependent changes in the goldfish startle-escape behavior (2003) J Neurosci, 23, pp. 5617-5626
  • Preuss, T., Osei-Bonsu, P.E., Weiss, S.A., Wang, C., Faber, D.S., Neural representation of object approach in a decision-making motor circuit (2006) J Neurosci, 26, pp. 3454-3464
  • Rall, W., Branching dendritic trees and motoneuron membrane resistivity (1959) Exp Neurol, 1, pp. 491-527
  • Rall, W., Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input (1967) J Neurophysiol, 30, pp. 1138-1168
  • Rall, W., Rinzel, J., Branch input resistance and steady attenuation for input to one branch of a dendritic neuron model (1973) Biophys J, 13, pp. 648-687
  • Renaud-Le Masson, S., Le Masson, G., Alvado, L., Saghi, S., Tomas, J., A neural simulation system based on biologically realistic electronic neurons (2004) Information Sciences, 161, pp. 57-69
  • Rinzel, J., Rall, W., Transient response in a dendritic neuron model for current injected at one branch (1974) Biophys J, 14, pp. 759-790
  • Roth, A., Häusser, M., Compartmental models of rat cerebellar Purkinje cells based on simultaneous somatic and dendritic patch-clamp recordings (2001) J Physiol (Lond), 535, pp. 445-472
  • Sajovic, P., Levinthal, C., Inhibitory mechanism in zebrafish optic tectum: visual response properties of tectal cells altered by picrotoxin and bicuculline (1983) Brain Res, 271, pp. 227-240
  • Seelig, J.D., Jayaraman, V., Feature detection and orientation tuning in the Drosophila central complex (2013) Nature, 503, pp. 262-266
  • Silver, R.A., Neuronal arithmetic (2010) Nat Rev Neurosci, 11, pp. 474-489
  • Singh, M.F., Zald, D.H., A simple transfer function for nonlinear dendritic integration (2015) Front Comput Neurosci, 9, p. 98
  • Smith, S.L., Smith, I.T., Branco, T., Häusser, M., Dendritic spikes enhance stimulus selectivity in cortical neurons in vivo (2013) Nature, 503, pp. 115-120
  • Stuart, G., Spruston, N., Determinants of voltage attenuation in neocortical pyramidal neuron dendrites (1998) J Neurosci, 18, pp. 3501-3510
  • Stuart, G., Spruston, N., Sakmann, B., Häusser, M., Action potential initiation and backpropagation in neurons of the mammalian CNS (1997) Trends Neurosci, 20, pp. 125-131
  • Stuart, G.J., Spruston, N., Dendritic integration: 60 years of progress (2015) Nat Neurosci, 18, pp. 1713-1721
  • Szabo, T.M., Weiss, S.A., Faber, D.S., Preuss, T., Representation of auditory signals in the M-cell: role of electrical synapses (2006) J Neurophysiol, 95, pp. 2617-2629
  • Temizer, I., Donovan, J.C., Baier, H., Semmelhack, J.L., A visual pathway for looming-evoked escape in larval zebrafish (2015) Curr Biol, 25, pp. 1823-1834
  • Tran-Van-Minh, A., Cazé, R.D., Abrahamsson, T., Cathala, L., Gutkin, B.S., DiGregorio, D.A., Contribution of sublinear and supralinear dendritic integration to neuronal computations (2015) Front Cell Neurosci, 9, p. 67
  • Varga, S., Jia, H., Sakmann, B., Konnerth, A., Dendritic coding of multiple sensory inputs in single cortical neurons in vivo (2011) PNAS, 108, pp. 15420-15425
  • Vetter, P., Roth, A., Häusser, M., Propagation of action potentials in dendrites depends on dendritic morphology (2001) J Neurophysiol, 85, pp. 926-937
  • Weiss, S.A., Preuss, T., Faber, D.S., A role of electrical inhibition in sensorimotor integration (2008) Proc Natl Acad Sci USA, 105, pp. 18047-18052
  • Weiss, S.A., Zottoli, S.J., Do, S.C., Faber, D.S., Preuss, T., Correlation of C-start behaviors with neural activity recorded from the hindbrain in free-swimming goldfish (Carassius auratus) (2006) J Exp Biol, 209, pp. 4788-4801
  • Xu, N., Harnett, M.T., Williams, S.R., Huber, D., O'Connor, D.H., Svoboda, K., Magee, J.C., Nonlinear dendritic integration of sensory and motor input during an active sensing task (2012) Nature, 492, pp. 247-251
  • Yuste, R., Tank, D.W., Dendritic integration in mammalian neurons, a century after Cajal (1996) Neuron, 16, pp. 701-716
  • Zottoli, S.J., Correlation of the startle reflex and Mauthner cell auditory responses in unrestrained goldfish (1977) J Exp Biol, 66, pp. 243-254
  • Zottoli, S.J., Comparison of Mauthner cell size in teleosts (1978) J Comp Neurol, 178, pp. 741-757
  • Zottoli, S.J., Bentley, A.P., Prendergast, B.J., Rieff, H.I., Comparative studies on the Mauthner cell of teleost fish in relation to sensory input (1995) Brain Behav Evol, 46, pp. 151-164
  • Zottoli, S.J., Faber, D.S., Properties and distribution of anterior VIIIth nerve excitatory inputs to the goldfish Mauthner cell (1979) Brain Res, 174, pp. 319-323
  • Zottoli, S.J., Hordes, A.R., Faber, D.S., Localization of optic tectal input to the ventral dendrite of the goldfish Mauthner cell (1987) Brain Res, 401, pp. 113-121

Citas:

---------- APA ----------
Medan, V., Mäki-Marttunen, T., Sztarker, J. & Preuss, T. (2018) . Differential processing in modality-specific Mauthner cell dendrites. Journal of Physiology, 596(4), 667-689.
http://dx.doi.org/10.1113/JP274861
---------- CHICAGO ----------
Medan, V., Mäki-Marttunen, T., Sztarker, J., Preuss, T. "Differential processing in modality-specific Mauthner cell dendrites" . Journal of Physiology 596, no. 4 (2018) : 667-689.
http://dx.doi.org/10.1113/JP274861
---------- MLA ----------
Medan, V., Mäki-Marttunen, T., Sztarker, J., Preuss, T. "Differential processing in modality-specific Mauthner cell dendrites" . Journal of Physiology, vol. 596, no. 4, 2018, pp. 667-689.
http://dx.doi.org/10.1113/JP274861
---------- VANCOUVER ----------
Medan, V., Mäki-Marttunen, T., Sztarker, J., Preuss, T. Differential processing in modality-specific Mauthner cell dendrites. J. Physiol. 2018;596(4):667-689.
http://dx.doi.org/10.1113/JP274861