Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The role of P/Q- and T-type calcium channels in the rhythmic oscillatory behaviour of inferior olive (IO) neurons was investigated in mutant mice. Mice lacking either the CaV2.1 gene of the pore-forming α1A subunit for P/Q-type calcium channel, or the CaV3.1 gene of the pore-forming α1G subunit for T-type calcium channel were used. In vitro intracellular recording from IO neurons reveals that the amplitude and frequency of sinusoidal subthreshold oscillations (SSTOs) were reduced in the CaV2.1-/- mice. In the CaV3.1-/- mice, IO neurons also showed altered patterns of SSTOs and the probability of SSTO generation was significantly lower (15%, 5 of 34 neurons) than that of wild-type (78%, 31 of 40 neurons) or CaV2.1-/- mice (73%, 22 of 30 neurons). In addition, the low-threshold calcium spike and the sustained endogenous oscillation following rebound potentials were absent in IO neurons from CaV3.1-/- mice. Moreover, the phase-reset dynamics of oscillatory properties of single neurons and neuronal clusters in IO were remarkably altered in both CaV2.1-/- and CaV3.1-/- mice. These results suggest that both α1A P/Q- and α1G T-type calcium channels are required for the dynamic control of neuronal oscillations in the IO. These findings were supported by results from a mathematical IO neuronal model that incorporated T and P/Q channel kinetics. © 2010 The Authors. Journal compilation © 2010 The Physiological Society.

Registro:

Documento: Artículo
Título:Subthreshold membrane potential oscillations in inferior olive neurons are dynamically regulated by P/Q- and T-type calcium channels: A study in mutant mice
Autor:Choi, S.; Yu, E.; Kim, D.; Urbano, F.J.; Makarenko, V.; Shin, H.; Llinás, R.R.
Filiación:Department of Physiology and Neuroscience, New York University School of Medicine, 550 First Avenue, New York, NY 10016, United States
Institute of Physiology, Molecular Biology and Neuroscience (IFIBYNE), National Research Council (CONICET), Buenos Aires, Argentina
Department of Neuroscience, University of Science and Technology, Daejon 305-333, South Korea
Center for Neural Science, Korea Institute of Science and Technology, Seoul 136-791, South Korea
Department of Biological Science, Korea Advanced Institute of Science and Technology, Daejon 305-701, South Korea
Palabras clave:calcium channel; calcium channel Cav2.1; calcium channel Cav3.1; calcium channel P type; calcium channel Q type; calcium channel T type; unclassified drug; calcium channel P type; calcium channel Q type; calcium channel T type; animal cell; animal experiment; animal tissue; article; controlled study; electric potential; inferior olive; mathematical model; membrane potential; mouse; nerve cell; nonhuman; oscillation; priority journal; action potential amplitude; Article; cell function; cellular parameters; female; inferior olive; intracellular recording; male; membrane steady potential; molecular imaging; nerve cell membrane potential; protein function; protein transport; signal transduction; sinusoidal subthreshold membrane potential oscillation; spike wave; Animals; Calcium Channels, P-Type; Calcium Channels, Q-Type; Calcium Channels, T-Type; Calcium Signaling; Computer Simulation; Kinetics; Membrane Potentials; Mice; Mice, Knockout; Models, Neurological; Neurons; Olivary Nucleus
Año:2010
Volumen:588
Número:16
Página de inicio:3031
Página de fin:3043
DOI: http://dx.doi.org/10.1113/jphysiol.2009.184705
Título revista:Journal of Physiology
Título revista abreviado:J. Physiol.
ISSN:00223751
CODEN:JPHYA
CAS:Cacna1a protein, mouse; Cacna1g protein, mouse; Calcium Channels, P-Type; Calcium Channels, Q-Type; Calcium Channels, T-Type
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00223751_v588_n16_p3031_Choi

Referencias:

  • Bal, T., McCormick, D.A., Synchronized oscillations in the inferior olive are controlled by the hyperpolarization-activated cation current Ih (1997) J Neurophysiol, 77, pp. 3145-3156
  • Bell, C., Kawasaki, T., Relations among climbing fiber responses of nearby Purkinje cells (1972) J Neurophysiol, 35, pp. 155-169
  • Benardo, L., Foster, R., Oscillatory behavior in inferior olive neurons: mechanism, modulation, cell aggregates (1986) Brain Res Bull, 17, pp. 773-784
  • Bezrukov, S., Vodyanoy, I., Stochastic resonance and small-amplitude signal transduction in voltage-gated ion channels (2000) Self-organized Biological Dynamics and Nonlinear Control, , Walleczek J. ed, Cambridge University Press, Cambridge
  • Bulsara, A., Hanggi, P., Marchesoni, F., Moss, F., Shlesinger, M., Special issue: Stochastic resonance in physics and biology (1993) J Stat Phys, 70, pp. 1-512
  • Crill, W.E., Kennedy, T.T., Inferior olive of the cat: intracellular recording (1967) Science, 157, pp. 716-718
  • De Zeeuw, C., Chorev, E., Devor, A., Manor, Y., Van Der Giessen, R., et al, Deformation of network connectivity in the inferior olive of connexin 36-deficient mice is compensated by morphological and electrophysiological changes at the single neuron level (2003) J Neurosci, 23, pp. 4900-4911
  • Ertel, E., Campbell, K., Harpold, M., Hofmann, F., Mori, Y., Perez-Reyes, E., Schwartz, A., Birbaumer, L., Nomenclature of voltage-gated calcium channels (2000) Neuron, 25, pp. 533-535
  • Hanggi, P., Stochastic resonance in biology. How noise can enhance detection of weak signals and help improve biological information processing (2002) Chemphyschem, 3, pp. 285-290
  • Hillman, D., Chen, S., Aung, T.T., Cherksey, B., Sugimori, M., Llinás, R.R., Localization of P-type calcium channels in the central nervous system (1991) Proc Natl Acad Sci U S A, 88, pp. 7076-7080
  • Hutcheon, B., Yarom, Y., Resonance, oscillation and the intrinsic frequency preferences of neurons (2000) Trends Neurosci, 23, pp. 216-222
  • Izhikevich, E.M., Resonate-and-fire neurons (2001) Neural Netw, 14, pp. 883-894
  • Izhikevich, E.M., Desai, N.S., Walcott, E.C., Hoppensteadt, F.C., Bursts as a unit of neural information: selective communication via resonance (2003) Trends Neurosci, 26, pp. 161-167
  • Kennedy, P.R., Ross, H.G., Brooks, V.B., Participation of the principal olivary nucleus in neocerebellar motor control (1982) Exp Brain Res, 47, pp. 95-104
  • Konnerth, A., Obaid, A.L., Salzberg, B.M., Optical recording of electrical activity from parallel fibres and other cell types in skate cerebellar slices in vitro (1987) J Physiol, 393, pp. 681-702
  • Lampl, I., Yarom, Y., Subthreshold oscillations of the membrane potential: a functional synchronizing and timing device (1993) J Neurophysiol, 70, pp. 2181-2186
  • Lampl, I., Yarom, Y., Subthreshold oscillations and resonant behavior: two manifestations of the same mechanism (1997) Neuroscience, 78, pp. 325-341
  • Lev-Ram, V., Grinvald, A., Ca2+- and K+-dependent communication between central nervous system myelinated axons and oligodendrocytes revealed by voltage-sensitive dyes (1986) Proc Natl Acad Sci U S A, 83, pp. 6651-6655
  • Leznik, E., Llinás, R., Role of gap junctions in synchronized neuronal oscillations in the inferior olive (2005) J Neurophysiol, 94, pp. 2447-2456
  • Leznik, E., Makarenko, V., Llinás, R., Electrotonically mediated oscillatory patterns in neuronal ensembles: an in vitro voltage-dependent dye-imaging study in the inferior olive (2002) J Neurosci, 22, pp. 2804-2815
  • Lindner, B., Longtin, A., Bulsara, A., Analytical expressions for rate CV of a type I neuron driven by Gaussian noise (2003) Neural Comput, 15, pp. 1760-1787
  • Llinás, R., Baker, R., Sotelo, C., Electrotonic coupling between neurons in cat inferior olive (1974) J Neurophysiol, 37, pp. 560-571
  • Llinás, R., Hess, R., Tetrodotoxin-resistant dendritic spikes in avian Purkinje cells (1976) Proc Natl Acad Sci U S A, 73, pp. 2520-2523
  • Llinás, R., Sugimori, M., Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices (1980) J Physiol, 305, pp. 171-195
  • Llinás, R., Volkind, R.A., The olivo-cerebellar system: functional properties as revealed by harmaline-induced tremor (1973) Exp Brain Res, 18, pp. 69-87
  • Llinás, R., Walton, K., Hillman, D.E., Sotelo, C., Inferior olive: its role in motor learning (1975) Science, 190, pp. 1230-1231
  • Llinás, R., Yarom, Y., Electrophysiology of mammalian inferior olivary neurones in vitro. Different types of voltage-dependent ionic conductances (1981) J Physiol, 315, pp. 549-567
  • Llinás, R., Yarom, Y., Properties and distribution of ionic conductances generating electroresponsiveness of mammalian inferior olivary neurones in vitro (1981) J Physiol, 315, pp. 569-584
  • Llinás, R., Yarom, Y., Oscillatory properties of guinea-pig inferior olivary neurones and their pharmacological modulation: an in vitro study (1986) J Physiol, 376, pp. 163-182
  • Long, M.A., Deans, M.R., Paul, D.L., Connors, B.W., Rhythmicity without synchrony in the electrically uncoupled inferior olive (2002) J Neurosci, 22, pp. 10898-10905
  • Lowe, L., Voltage-sensitive dyes: measurement of membrane potentials induced by DC and AC electric fields (1992) Bioelectromagnetics, (SUPP 1), pp. 179-189
  • McDonnell, M.D., Abbott, D., What is stochastic resonance? Definitions, misconceptions, debates, and its relevance to biology (2009) PLoS Comput Biol, 5, pp. e1000348
  • McKay, B.E., McRory, J.E., Molineux, M.L., Hamid, J., Snutch, T.P., Zamponi, G.W., Turner, R.W., CaV3 T-type calcium channel isoforms differentially distribute to somatic and dendritic compartments in rat central neurons (2006) Eur J Neurosci, 24, pp. 2581-2594
  • Makarenko, V., Llinás, R., Experimentally determined chaotic phase synchronization in a neuronal system (1998) Proc Natl Acad Sci U S A, 95, pp. 15747-15752
  • Placantonakis, D.G., Bukovsky, A.A., Aicher, S.A., Kiem, H.P., Welsh, J.P., Continuous electrical oscillations emerge from a coupled network: a study of the inferior olive using lentiviral knockdown of connexin36 (2006) J Neurosci, 26, pp. 5008-5016
  • Sasaki, K., Bower, J., Llinás, R., Multiple Purkinje cell recording in rodent cerebellar cortex (1989) Eur J Neurosci, 1, pp. 572-586
  • Shaikh, A.G., Miura, K., Optican, L.M., Ramat, S., Leigh, R.J., Zee, D.S., A new familial disease of saccadic oscillations and limb tremor provides clues to mechanisms of common tremor disorders (2007) Brain, 130, pp. 3020-3031
  • Soechting, J.F., Ranish, N.A., Palminteri, R., Terzuolo, C.A., Changes in a motor pattern following cerebellar and olivary lesions in the squirrel monkey (1976) Brain Res, 105, pp. 21-44
  • Sotelo, C., Llinás, R., Baker, R., Structural study of inferior olivary nucleus of the cat: morphological correlates of electrotonic coupling (1974) J Neurophysiol, 37, pp. 541-559
  • Talley, E.M., Cribbs, L.L., Lee, J.H., Daud, A., Perez-Reyes, E., Bayliss, D.A., Differential distribution of three members of a gene family encoding low voltage-activated (T-type) calcium channels (1999) J Neurosci, 19, pp. 1895-1911
  • Van Der Giessen, R.S., Koekkoek, S.K., van Dorp, S., De Gruijl, J.R., Cupido, A., Khosrovani, S., et al, Role of olivary electrical coupling in cerebellar motor learning (2008) Neuron, 58, pp. 599-612
  • Welsh, J.P., Lang, E.J., Suglhara, I., Llinás, R., Dynamic organization of motor control within the olivocerebellar system (1995) Nature, 374, pp. 453-457

Citas:

---------- APA ----------
Choi, S., Yu, E., Kim, D., Urbano, F.J., Makarenko, V., Shin, H. & Llinás, R.R. (2010) . Subthreshold membrane potential oscillations in inferior olive neurons are dynamically regulated by P/Q- and T-type calcium channels: A study in mutant mice. Journal of Physiology, 588(16), 3031-3043.
http://dx.doi.org/10.1113/jphysiol.2009.184705
---------- CHICAGO ----------
Choi, S., Yu, E., Kim, D., Urbano, F.J., Makarenko, V., Shin, H., et al. "Subthreshold membrane potential oscillations in inferior olive neurons are dynamically regulated by P/Q- and T-type calcium channels: A study in mutant mice" . Journal of Physiology 588, no. 16 (2010) : 3031-3043.
http://dx.doi.org/10.1113/jphysiol.2009.184705
---------- MLA ----------
Choi, S., Yu, E., Kim, D., Urbano, F.J., Makarenko, V., Shin, H., et al. "Subthreshold membrane potential oscillations in inferior olive neurons are dynamically regulated by P/Q- and T-type calcium channels: A study in mutant mice" . Journal of Physiology, vol. 588, no. 16, 2010, pp. 3031-3043.
http://dx.doi.org/10.1113/jphysiol.2009.184705
---------- VANCOUVER ----------
Choi, S., Yu, E., Kim, D., Urbano, F.J., Makarenko, V., Shin, H., et al. Subthreshold membrane potential oscillations in inferior olive neurons are dynamically regulated by P/Q- and T-type calcium channels: A study in mutant mice. J. Physiol. 2010;588(16):3031-3043.
http://dx.doi.org/10.1113/jphysiol.2009.184705