Abstract:
We measured and analyzed the dynamic and remnant current-voltages curves of Al/TiO 2 /Au and Ni/TiO 2 /Ni/Au memory devices in order to understand the conduction mechanisms and their synapse-like memory properties. Current levels and switching threshold voltages are strongly affected by the metal used for the electrode. We propose a non-trivial circuit model which captures in detail the current-voltage response of both kinds of devices. We found that, for the former device, the voltage threshold can be maintained constant, independently of the applied voltage history, while for the latter, a limiting resistor controls the threshold voltages behavior, being the origin of their dependence on the resistance value previous to the switching. The identification of the conduction mechanisms across the device allows optimizing the memristor performance and determining the best electrode choice to improve the device synapse-emulation abilities. © 2019 IOP Publishing Ltd.
Registro:
Documento: |
Artículo
|
Título: | Adaptive threshold in TiO 2 -based synapses |
Autor: | Ghenzi, N.; Barella, M.; Rubi, D.; Acha, C. |
Filiación: | Gerencia de Investigaciones y Aplicaciones e Instituto de Nanociencia y Nanotecnología (CNEA), San Martín, Buenos Aires, C1650B, Argentina Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1033AAJ Bs. As., Argentina Facultad de Ingeniería y Agronomía, UCA, C1107AFF Bs. As., Argentina Dep. de Física, FCEyN, UBA, IFIBA-Conicet, Pab. 1, Ciudad Universitaria, C1428EHA Bs. As., Argentina Centro de Micro y Nanoelectrónica, INTI, Av. Gral. Paz 5445, San Martín, Bs. As., B1650JKA, Argentina
|
Palabras clave: | electrical circuit modelling; memristor; resistive switching; synapse emulation; Circuit simulation; Electrodes; Memristors; Titanium dioxide; Adaptive thresholds; Conduction Mechanism; Current-voltage response; Electrical circuit; Memristor; Resistive switching; Switching threshold voltage; synapse emulation; Threshold voltage |
Año: | 2019
|
Volumen: | 52
|
Número: | 12
|
DOI: |
http://dx.doi.org/10.1088/1361-6463/aafdf3 |
Título revista: | Journal of Physics D: Applied Physics
|
Título revista abreviado: | J Phys D
|
ISSN: | 00223727
|
CODEN: | JPAPB
|
Registro: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00223727_v52_n12_p_Ghenzi |
Referencias:
- Ielmini, D., Wong, H.S., (2018) Nat. Electron., 1, p. 333
- Kumar, D., (2017) Appl. Phys. Lett., 110
- Roppolo, I., (2017) J. Phys. Chem., 121, p. 14285
- Chua, L., (1971) IEEE Trans. Circuit Theory, 18, p. 507
- Dongale, T.D., (2018) J. Nanosci. Nanotechnol., 18, p. 7758
- Dongale, T.D., (2018) J. Nanoelectron. Optoelectron., 13, p. 68
- Strukov, D.B., (2008) Nature, 453, p. 80
- Jeong, D.S., Schroeder, H., Waser, R., (2009) Phys. Rev., 79
- Yoon, K., (2012) Nanotechnology, 23, p. 18
- Yang, J.J., (2012) MRS Bull., 37, p. 131
- Ielmini, D., (2018) Microelectron. Eng., 190, p. 44
- Jo, S.H., (2010) Nano Lett., 10, p. 1297
- Wu, C., (2017) Nat. Commun., 8, p. 752
- Ramos, C.Z., (2011) Frontiers Neurosci., 5, p. 26
- Cai, W., Ellinger, F., Tetzlaff, R., (2015) IEEE Trans. Biomed. Circuits Syst., 9, p. 87
- Ghenzi, N., (2014) Appl. Phys. Lett., 104
- Wang, S., (2018) Nanoscale Res. Lett., 13, p. 18
- Kindsmuller, A., (2018) APL Mater., 6
- Acha, C., (2017) J. Appl. Phys., 121
- Chiu, F., (2014) Adv. Mater. Sci. Eng., 2014. , 2014
- Ghenzi, N., (2015) Appl. Phys. Lett., 106
- Acha, C., (2011) J. Phys. D: Appl. Phys., 44 (34)
- Acha, C., Schulman, A., Boudard, M., Daoudi, K., Tsuchiya, T., (2016) Appl. Phys. Lett., 109, p. 11603
- Acevedo, W.R., Acha, C., Sánchez, M.J., Levy, P., Rubi, D., (2017) Appl. Phys. Lett., 110
- Yoshidaa, C., Tsunoda, K., Noshiro, H., Sugiyama, Y., (2007) Appl. Phys. Lett., 91
- Schroeder, H., Jeong, D.S., (2007) Microelectron. Eng., 84, p. 1982
- Zhang, H., (2018) ACS Appl. Mater. Interfaces, 10, p. 29766
- Pennartz, C.M.A., (1997) Neuroscience, 81, p. 303
- Cai, W., Tetzlaff, R., Advanced memristive model of synapses with adaptive thresholds (2012) 13th Int. Workshop on Cellular Nanoscale Networks and Their Applications, pp. 1-6. , pp
- Bolle, D., Heylen, R., (2007) Int. J. Neural Syst., 17, p. 241
- Sahu, D., Jammalamadaka, S., (2017) Sci. Rep., 7, p. 17224
- Sawa, A., (2008) Mater. Today, 11, p. 28
- Jeon, S.H., Park, B.H., (2006) Appl. Phys. Lett., 89
- Ciencia, R., (2012) Phys. Rev., 86
- Marlasca, F.G., (2011) Appl. Phys. Lett., 98
- Cerchez, D., (2013) Appl. Phys. Lett., 103
- Kim, S., Lim, M., Kim, Y., Kim, H.D., Choi, S.J., (2018) Sci. Rep., 8, p. 2638
Citas:
---------- APA ----------
Ghenzi, N., Barella, M., Rubi, D. & Acha, C.
(2019)
. Adaptive threshold in TiO 2 -based synapses. Journal of Physics D: Applied Physics, 52(12).
http://dx.doi.org/10.1088/1361-6463/aafdf3---------- CHICAGO ----------
Ghenzi, N., Barella, M., Rubi, D., Acha, C.
"Adaptive threshold in TiO 2 -based synapses"
. Journal of Physics D: Applied Physics 52, no. 12
(2019).
http://dx.doi.org/10.1088/1361-6463/aafdf3---------- MLA ----------
Ghenzi, N., Barella, M., Rubi, D., Acha, C.
"Adaptive threshold in TiO 2 -based synapses"
. Journal of Physics D: Applied Physics, vol. 52, no. 12, 2019.
http://dx.doi.org/10.1088/1361-6463/aafdf3---------- VANCOUVER ----------
Ghenzi, N., Barella, M., Rubi, D., Acha, C. Adaptive threshold in TiO 2 -based synapses. J Phys D. 2019;52(12).
http://dx.doi.org/10.1088/1361-6463/aafdf3