Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The development of reliable redox-based resistive random-access memory devices requires understanding and disentangling concurrent effects present at memristive interfaces. We report on the fabrication and electrical characterization of TiOx/La1/3Ca2/3MnO3-x microstructured interfaces and on the modeling of their memristive behavior. We show that a careful tuning of the applied external electrical stimuli allows controlling the redox process between both layers, obtaining multilevel non-volatile resistance states. We simulate the oxygen vacancies dynamics at the interface between both oxides, and successfully reproduce the experimental electrical behavior after the inclusion of an electronic effect, related to the presence of an n-p diode at the interface. The formation of the diode is due to the n- and p-character of TiOx and La1/3Ca2/3MnO3-x, respectively. Our analysis indicates that oxygen vacancies migration between both layers is triggered after the diode is polarized either in forward mode or in reverse mode above breakdown. Electrical measurements at different temperatures suggest that the diode can be characterized as Zener-type. The advantages of our junctions for their implementation in RRAM devices are finally discussed. © 2018 IOP Publishing Ltd.

Registro:

Documento: Artículo
Título:Concurrent ionic migration and electronic effects at the memristive TiOx/La1/3Ca2/3MnO3-x interface
Autor:Acevedo, W.R.; Ferreyra, C.; Sánchez, M.J.; Acha, C.; Gay, R.; Rubi, D.
Filiación:GIyA e INN, CNEA, Av. Gral Paz 1499 (1650), San-Martin-Buenos-Aires, Argentina
Centro Atómico Bariloche, Instituto Balseiro, Rio Negro, San Carlos de Bariloche8400, Argentina
Consejo Nacional de Investigaciones Cientificas y Técnicas (CONICET), Godoy Cruz 2290 (1425), Buenos Aires, Argentina
Departamento de Fisica, FCEyN, Universidad de Buenos Aires, IFIBA-CONICET, Pab. I, Ciudad Universitaria, Buenos Aires (1428), Argentina
CIC NanoGUNE, Tolosa Hiribidea 76, Donostia-San-Sebastián, 20018, Spain
Escuela de Ciencia y Tecnologia, UNSAM, Campus Miguelete (1650), San-Martin-Buenos-Aires, Argentina
Palabras clave:n-p junctions; oxide interfaces; resistive switching; Calcium compounds; Diodes; Lanthanum compounds; Manganese compounds; Oxygen vacancies; Titanium compounds; Electrical behaviors; Electrical characterization; Electrical measurement; Memristive behavior; N - p junctions; Oxide interfaces; Resistive random access memory; Resistive switching; Random access storage
Año:2018
Volumen:51
Número:12
DOI: http://dx.doi.org/10.1088/1361-6463/aaaed6
Título revista:Journal of Physics D: Applied Physics
Título revista abreviado:J Phys D
ISSN:00223727
CODEN:JPAPB
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00223727_v51_n12_p_Acevedo

Referencias:

  • Sawa, A., (2008) Mater. Today, 11, p. 28
  • Waser, R., Dittmann, R., Staikov, G., Szot, K., (2009) Adv. Mater., 21, p. 2632
  • Liu, S.Q., Wu, N.J., Ignatiev, A., (2000) Appl. Phys. Lett., 76, p. 2749
  • Rozenberg, M.J., Inoue, I.H., Sánchez, M.J., (2004) Phys. Rev. Lett., 92
  • Rozenberg, M.J., Sánchez, M.J., Weht, R., Acha, C., Gomez-Marlasca, F., Levy, P., (2010) Phys. Rev., 81
  • Rubi, D., Tesler, F., Alposta, I., Kalstein, A., Ghenzi, N., Gomez-Marlasca, F., Rozenberg, M., Levy, P., (2013) App. Phys. Lett., 103
  • Herpers, A., Lenser, C., Park, C., Offi, F., Borgatti, F., Panaccione, G., Menzel, S., Dittmann, R., (2014) Adv. Mater., 26, p. 2730
  • Asanuma, S., (2009) Phys. Rev., 80
  • Tian, B., (2017) Phys. Chem. Chem. Phys., 19, p. 16960
  • Román Acevedo, W., (2017) Appl. Phys. Lett., 110
  • Ghenzi, N., (2013) J. Phys. D: Appl. Phys., 46 (41)
  • Miranda, E., (2017) J. Appl. Phys., 121
  • Asamitsu, A., (1997) Nature, 388, p. 50
  • Herpers, A., (2014) PhD Thesis, , Electrical characterization of manganite and titanate structures Forschungszentrum Judie;lich
  • Hossein-Babaei, F., Rahbarpour, S., (2011) Solid-State Electron., 56, p. 185
  • Wang, Z.-W., (2010) Phys. Rev., 82
  • Vengalis, B., (2001) J. Phys., 11, pp. PR11-P209
  • Lee, H.-S., Park, H.-H., Rozenberg, M.J., (2015) Nanoscale, 7, p. 6444
  • Sze, S.M., Ng, K.K., (2007) Physics of Semiconductor Devices, , (Hoboken, NJ: Wiley)
  • Singh Tyagi, M., (1968) Solid-State Electron., 11, p. 117
  • Lee, N., Lansac, Y.B., Hwang, H.C., Jang, Y.H., (2015) RSC Adv., 5
  • Huang, X., (2011) Electron Devices Meeting, , (https://doi.org/10.1109/IEDM.2011.6131653)

Citas:

---------- APA ----------
Acevedo, W.R., Ferreyra, C., Sánchez, M.J., Acha, C., Gay, R. & Rubi, D. (2018) . Concurrent ionic migration and electronic effects at the memristive TiOx/La1/3Ca2/3MnO3-x interface. Journal of Physics D: Applied Physics, 51(12).
http://dx.doi.org/10.1088/1361-6463/aaaed6
---------- CHICAGO ----------
Acevedo, W.R., Ferreyra, C., Sánchez, M.J., Acha, C., Gay, R., Rubi, D. "Concurrent ionic migration and electronic effects at the memristive TiOx/La1/3Ca2/3MnO3-x interface" . Journal of Physics D: Applied Physics 51, no. 12 (2018).
http://dx.doi.org/10.1088/1361-6463/aaaed6
---------- MLA ----------
Acevedo, W.R., Ferreyra, C., Sánchez, M.J., Acha, C., Gay, R., Rubi, D. "Concurrent ionic migration and electronic effects at the memristive TiOx/La1/3Ca2/3MnO3-x interface" . Journal of Physics D: Applied Physics, vol. 51, no. 12, 2018.
http://dx.doi.org/10.1088/1361-6463/aaaed6
---------- VANCOUVER ----------
Acevedo, W.R., Ferreyra, C., Sánchez, M.J., Acha, C., Gay, R., Rubi, D. Concurrent ionic migration and electronic effects at the memristive TiOx/La1/3Ca2/3MnO3-x interface. J Phys D. 2018;51(12).
http://dx.doi.org/10.1088/1361-6463/aaaed6