Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

A study of the electrical characteristics of the trielectrode plasma curtain (TPC) discharge is presented. The influence of the air-gap size (for a fixed value of the inter-electrode distance) on the discharge behaviour has been exhaustively studied. The TPC discharge is based on the combination of a dielectric barrier discharge (DBD) with a corona discharge (CD) in a three electrode system, and basically it consists of the 'stretching' of a pure DBD by the action of a negative CD generated between the active electrode of the dielectric barrier and a remote third electrode. It was found that the general trend of the electrical characteristic curves (the average discharge current and the streamer frequency as functions of the AC and DC biasing voltages) was very similar for all the air-gap values considered. Our results indicate that the development of the TPC discharge requires two conditions: (a) the presence of a positive cycle of a well-developed DBD together with a CD where the remote electrode acts as the cathode and (b) a voltage drop between the DBD electrode and the remote electrode high enough to obtain an average electric field in the gap that must exceed a minimum average electric field value in the streamer channel necessary for its propagation across the gap (≈6.3 kV cm-1 in our experimental conditions). © 2009 IOP Publishing Ltd.

Registro:

Documento: Artículo
Título:Electrical characteristics and influence of the air-gap size in a trielectrode plasma curtain at atmospheric pressure
Autor:Sosa, R.; Grondona, D.; Mrquez, A.; Artana, G.; Kelly, H.
Filiación:Laboratorio de Fluidodinmica, Universidad de Buenos Aires, Av. Paseo Colón 850, 1063, Buenos Aires, Argentina
Instituto de Física del Plasma, CONICET - Dto de Física, Ciudad Universitaria, Pab. I, 1428, Buenos Aires, Argentina
Palabras clave:Active electrodes; Air-gap; Corona discharges; Dc biasing; Dielectric barrier; Dielectric barrier discharges; Discharge behaviour; Discharge currents; Electrical characteristic; Electrode distances; Experimental conditions; General trends; Streamer channel; Third electrode; Three electrode-system; Voltage drop; Atmospheric pressure; Data storage equipment; Dielectric devices; Electric corona; Electric fields; Electric network analysis; Plasmas; Electric discharges
Año:2009
Volumen:42
Número:4
DOI: http://dx.doi.org/10.1088/0022-3727/42/4/045205
Título revista:Journal of Physics D: Applied Physics
Título revista abreviado:J Phys D
ISSN:00223727
CODEN:JPAPB
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00223727_v42_n4_p_Sosa

Referencias:

  • Goldman, M., Goldman, A., Sigmond, R.S., (1985) Pure Appl. Chem., 57 (9), p. 1353
  • Wagner, H.E., Branderburg, R., Kozlov, K.V., Sonnenfeld, A., Michel, P., Behnke, J.F., (2003) Vacuum, 71 (3), p. 417
  • Reece Roth, J., Rahel, J., Dai, X., Sherman, D.M., (2005) J. Phys. D: Appl. Phys., 38 (4), p. 555
  • Shakaran, R.M., Giapis, K.P., (2001) Appl. Phys. Lett., 79 (5), p. 593
  • Benedikt, J., Focke, K., Yanguas-Gil, A., Von Keudell, A., (2006) Appl. Phys. Lett., 89 (25), p. 251504
  • Shoenbach, K.H., El-Habach, A., Shi, W., Ciocca, M., (1997) Plasma Sources Sci. Technol., 6 (4), p. 468
  • Rahman, A., Yalin, A.P., Suria, V., Stan, O., Hoshimiya, K., Yu, Z., Littlefield, E., Collins, G.J., (2004) Plasma Sources Sci. Technol., 13 (3), p. 537
  • Ben Gadria, R., Roth, J.R., Montie, T.C., Kelly-Winterberg, K., Tsai, P., Helfritch, D.J., Feldman, P., Chen, Z., (2000) Surf. Coat. Technol., 131 (1-3), p. 528
  • Moreau, E., (2007) J. Phys. D: Appl. Phys., 40 (3), p. 605
  • Zastawny, H., Sosa, R., Grondona, D., Mrquez, A., Artana, G., Kelly, H., (2008) Appl. Phys. Lett., 93 (3), p. 031501
  • Sosa, R., Kelly, H., Grondona, D., Mrquez, A., Artana, G., Lago, V., (2008) J. Phys. D: Appl. Phys., 41 (3), p. 035202
  • Zouzou, N., Takashima, K., Moreau, E., Mizuno, A., Touchard, G., (2007) Proc. 28th Int. Conf. on Phenomena in Ionized Gases
  • Louste, C., Artana, G., Moreau, E., Touchard, G., (2005) J. Electrostat., 63 (6-10), p. 615
  • Manish, Y., (2005) MS Thesis
  • Peek, F.W., (1915) Dielectric Phenomena in High Voltage Engineering
  • Reece Roth, J., Dai, X., (2006) Proc. 44th AIAA Aerospace Sciences Meeting and Exhibit
  • Bazelyan, E.M., Raizer, Y.P., (1998) Spark Discharge
  • Raizer, Y.P., (1991) Gas Discharge Physics
  • Trusov, K.K., (2006) J. Phys. D. Appl. Phys., 39 (2), p. 335
  • Trusov, K.K., (2007) J. Phys. D. Appl. Phys., 40 (3), p. 786
  • Timatkov, V.V., Pietsch, G.J., Saveliev, A.B., Sokolova, M.V., Temnikov, A.G., (2005) J. Phys. D: Appl. Phys., 38 (6), pp. 877-886
  • Lee, H.-H., Hara, M., (1993) IEEE Trans. Electr. Insul., 28 (1), pp. 35-42

Citas:

---------- APA ----------
Sosa, R., Grondona, D., Mrquez, A., Artana, G. & Kelly, H. (2009) . Electrical characteristics and influence of the air-gap size in a trielectrode plasma curtain at atmospheric pressure. Journal of Physics D: Applied Physics, 42(4).
http://dx.doi.org/10.1088/0022-3727/42/4/045205
---------- CHICAGO ----------
Sosa, R., Grondona, D., Mrquez, A., Artana, G., Kelly, H. "Electrical characteristics and influence of the air-gap size in a trielectrode plasma curtain at atmospheric pressure" . Journal of Physics D: Applied Physics 42, no. 4 (2009).
http://dx.doi.org/10.1088/0022-3727/42/4/045205
---------- MLA ----------
Sosa, R., Grondona, D., Mrquez, A., Artana, G., Kelly, H. "Electrical characteristics and influence of the air-gap size in a trielectrode plasma curtain at atmospheric pressure" . Journal of Physics D: Applied Physics, vol. 42, no. 4, 2009.
http://dx.doi.org/10.1088/0022-3727/42/4/045205
---------- VANCOUVER ----------
Sosa, R., Grondona, D., Mrquez, A., Artana, G., Kelly, H. Electrical characteristics and influence of the air-gap size in a trielectrode plasma curtain at atmospheric pressure. J Phys D. 2009;42(4).
http://dx.doi.org/10.1088/0022-3727/42/4/045205