Artículo

Luque, G.M.; Perez-Millán, M.I.; Ornstein, A.M.; Cristina, C.; Becu-Villalobos, D. "Inhibitory effects of antivascular endothelial growth factor strategies in experimental dopamine-resistant prolactinomas" (2011) Journal of Pharmacology and Experimental Therapeutics. 337(3):766-774
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Prolactin-secreting adenomas are the most frequent type among pituitary tumors, and pharmacological therapy with dopamine agonists remains the mainstay of treatment. But some adenomas are resistant, and a decrease in the number or function of dopamine D2 receptors (D2Rs) has been described in these cases. D2R knockout [Drd2(-/-)] mice have chronic hyperprolactinemia and pituitary hyperplasia and provide an experimental model for dopamine agonist-resistant prolactinomas. We described previously that disruption of D2Rs increases vascular endothelial growth factor (VEGF) expression. We therefore designed two strategies of antiangiogenesis using prolactinomas generated in Drd2(-/-) female mice: direct intra-adenoma mVEGF R1 (Flt-1)/Fc chimera (VEGF-TRAP) injection for 3 weeks [into subcutaneously transplanted pituitaries from Drd2(-/-) mice] and systemic VEGF neutralization with the specific monoclonal antibody G6-31. Both strategies resulted in substantial decrease of prolactin content and lactotrope area, and a reduction in tumor size was observed in in situ prolactinomas. There were significant decreases in vascularity, evaluated by cluster of differentiation molecule 31 vessel staining, and proliferation (proliferating cell nuclear antigen staining) in response to both anti-VEGF treatments. These data demonstrate that the antiangiogenic approach was effective in inhibiting the growth of in situ dopamine-resistant prolactinomas as well as in the transplanted adenomas. No differences in VEGF protein expression were observed after either anti-VEGF treatment, and, although serum VEGF was increased in G6-31-treated mice, pituitary activation of the VEGF receptor 2 signaling pathway was reduced. Our results indicate that, even though the role of angiogenesis in pituitary adenomas is contentious, VEGF might contribute to adequate vascular supply and represent a supplementary therapeutic target in dopamine agonist-resistant prolactinomas. Copyright © 2011 by The American Society for Pharmacology and Experimental Therapeutics.

Registro:

Documento: Artículo
Título:Inhibitory effects of antivascular endothelial growth factor strategies in experimental dopamine-resistant prolactinomas
Autor:Luque, G.M.; Perez-Millán, M.I.; Ornstein, A.M.; Cristina, C.; Becu-Villalobos, D.
Filiación:Instituto de Biología y Medicina Experimental, CONICET, Vuelta de Obligado 2490, Buenos Aires 1428, Argentina
Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junín, Buenos Aires, Argentina
Palabras clave:aflibercept; dopamine; dopamine 2 receptor; monoclonal antibody; monoclonal antibody G6-31; prolactin; unclassified drug; vasculotropin; vasculotropin receptor 2; animal experiment; animal model; animal tissue; antiangiogenic activity; article; cancer inhibition; cancer transplantation; controlled study; female; mouse; nonhuman; priority journal; prolactinoma; protein blood level; protein expression; signal transduction; tumor vascularization; Angiogenesis Inhibitors; Animals; Antibodies, Monoclonal; Cell Proliferation; Dopamine; Female; Hyperplasia; Mice; Mice, Inbred C57BL; Mice, Knockout; Microvessels; Neovascularization, Pathologic; Pituitary Gland; Pituitary Neoplasms; Prolactin; Prolactinoma; Receptors, Dopamine D2; Recombinant Fusion Proteins; Vascular Endothelial Growth Factor A; Vascular Endothelial Growth Factor Receptor-1
Año:2011
Volumen:337
Número:3
Página de inicio:766
Página de fin:774
DOI: http://dx.doi.org/10.1124/jpet.110.177790
Título revista:Journal of Pharmacology and Experimental Therapeutics
Título revista abreviado:J. Pharmacol. Exp. Ther.
ISSN:00223565
CODEN:JPETA
CAS:aflibercept, 845771-78-0, 862111-32-8; dopamine, 51-61-6, 62-31-7; prolactin, 12585-34-1, 50647-00-2, 9002-62-4; vasculotropin, 127464-60-2; Angiogenesis Inhibitors; Antibodies, Monoclonal; Prolactin, 9002-62-4; Receptors, Dopamine D2; Recombinant Fusion Proteins; Vascular Endothelial Growth Factor A; Vascular Endothelial Growth Factor Receptor-1, 2.7.10.1; aflibercept
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00223565_v337_n3_p766_Luque

Referencias:

  • Asa, S.L., Kelly, M.A., Grandy, D.K., Low, M.J., Pituitary lactotroph adenomas develop after prolonged lactotroph hyperplasia in dopamine D2 receptor-deficient mice (1999) Endocrinology, 140, pp. 5348-5355
  • Banerjee, S.K., Sarkar, D.K., Weston, A.P., De A, Campbell, D.R., Over expression of vascular endothelial growth factor and its receptor during the development of estrogen-induced rat pituitary tumors may mediate estrogen-initiated tumor angiogenesis (1997) Carcinogenesis, 18 (6), pp. 1155-1161. , DOI 10.1093/carcin/18.6.1155
  • Banerjee, S.K., Zoubine, M.N., Tran, T.M., Weston, A.P., Campbell, D.R., Overexpression of vascular endothelial growth factor164 and its co-receptor neuropilin-1 in estrogen-induced rat pituitary tumors and GH3 rat pituitary tumor cells (2000) Int J Oncol, 16, pp. 253-260
  • Basu, S., Nagy, J.A., Pal, S., Vasile, E., Eckelhoefer, I.A., Bliss, V.S., Manseau, E.J., Mukhopadhyay, D., The neurotransmitter dopamine inhibits angiogenesis induced by vascular permeability factor/vascular endothelial growth factor (2001) Nature Medicine, 7 (5), pp. 569-574. , DOI 10.1038/87895
  • Batchelor, T.T., Sorensen, A.G., Di, T.E., Zhang, W.-T., Duda, D.G., Cohen, K.S., Kozak, K.R., Jain, R.K., AZD2171, a Pan-VEGF Receptor Tyrosine Kinase Inhibitor, Normalizes Tumor Vasculature and Alleviates Edema in Glioblastoma Patients (2007) Cancer Cell, 11 (1), pp. 83-95. , DOI 10.1016/j.ccr.2006.11.021, PII S1535610806003709
  • Ben-Jonathan, N., Hnasko, R., Dopamine as a prolactin (PRL) inhibitor (2001) Endocrine Reviews, 22 (6), pp. 724-763. , DOI 10.1210/er.22.6.724
  • Burris III, H., Rocha-Lima, C., New therapeutic directions for advanced pancreatic cancer: Targeting the epidermal growth factor and vascular endothelial growth factor pathways (2008) Oncologist, 13, pp. 289-298
  • Caccavelli, L., Morange-Ramos, I., Kordon, C., Jaquet, P., Enjalbert, A., Alteration of Gα subunits mRNA levels in bromocriptine resistant prolactinomas (1996) Journal of Neuroendocrinology, 8 (10), pp. 737-746
  • Crawford, Y., Ferrara, N., VEGF inhibition: Insights from preclinical and clinical studies (2009) Cell Tissue Res, 335, pp. 261-269
  • Cristina, C., Diaz-Torga, G., Baldi, A., Gongora, A., Rubinstein, M., Low, M.J., Becu-Villalobos, D., Increased pituitary vascular endothelial growth factor-A in dopaminergic D2 receptor knockout female mice (2005) Endocrinology, 146 (7), pp. 2952-2962. , http://endo.endojournals.org/cgi/reprint/146/7/2952, DOI 10.1210/en.2004-1445
  • Cristina, C., Garcia-Tornadu, I., Diaz-Torga, G., Rubinstein, M., Low, M.J., Becu-Villalobos, D., Dopaminergic D2 receptor knockout mouse: An animal model of prolactinoma (2006) Frontiers of Hormone Research, 35, pp. 50-63. , DOI 10.1159/000094308, Pituitary Today: Molecular, Physiological and Clinical Aspects
  • Cristina, C., Perez-Millan, M.I., Luque, G., Dulce, R.A., Sevlever, G., Berner, S.I., Becu-Villalobos, D., VEGF and CD31 association in pituitary adenomas (2010) Endocr Pathol, 21, pp. 154-160
  • Di Ieva, A., Grizzi, F., Gaetani, P., Goglia, U., Tschabitscher, M., Mortini, P., Rodriguez Y Baena, R., Euclidean and fractal geometry of microvascular networks in normal and neoplastic pituitary tissue (2008) Neurosurg Rev, 31, pp. 271-281
  • Ferrara, N., Pathways mediating VEGF-independent tumor angiogenesis (2010) Cytokine Growth Factor Rev, 21, pp. 21-26
  • Folkman, J., Shing, Y., Angiogenesis (1992) J Biol Chem, 267, pp. 10931-10934
  • Fong, T.A.T., Shawver, L.K., Sun, L., Tang, C., App, H., Powell, T.J., Kim, Y.H., McMahon, G., SU5416 is a potent and selective inhibitor of the vascular endothelial growth factor receptor (Flk-1/KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth of multiple tumor types (1999) Cancer Research, 59 (1), pp. 99-106
  • Gerber, H.-P., McMurtrey, A., Kowalski, J., Yan, M., Keyt, B.A., Dixit, V., Ferrara, N., Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3'-kinase/Akt signal transduction pathway: Requirement for Flk-1/KDR activation (1998) Journal of Biological Chemistry, 273 (46), pp. 30336-30343. , DOI 10.1074/jbc.273.46.30336
  • Hoeben, A., Landuyt, B., Highley, M.S., Wildiers, H., Van Oosterom, A.T., De Bruijn, E.A., Vascular endothelial growth factor and angiogenesis (2004) Pharmacological Reviews, 56 (4), pp. 549-580. , DOI 10.1124/pr.56.4.3
  • Jugenburg, M., Kovacs, K., Stefaneanu, L., Scheithauer, B.W., Vasculature in nontumorous hypophyses, pituitary adenomas, and carcinomas: A quantitative morphologic study (1995) Endocr Pathol, 6, pp. 115-124
  • Kelly, M.A., Rubinstein, M., Asa, S.L., Zhang, G., Saez, C., Bunzow, J.R., Allen, R.G., Low, M.J., Pituitary lactotroph hyperplasia and chronic hyperprolactinemia in dopamine D2 receptor-deficient mice (1997) Neuron, 19 (1), pp. 103-113. , DOI 10.1016/S0896-6273(00)80351-7
  • Kerbel, R.S., Tumor angiogenesis (2008) N Engl J Med, 358, pp. 2039-2049
  • Kim, K., Yoshida, D., Teramoto, A., Expression of hypoxia-inducible factor 1α and vascular endothelial growth factor in pituitary adenomas (2005) Endocrine Pathology, 16 (2), pp. 115-121. , DOI 10.1385/EP:16:2:115
  • Komorowski, J., Jankewicz, J., Stepień, H., Vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) and soluble interleukin-2 receptor (sIL-2R) concentrations in peripheral blood as markers of pituitary tumours (2000) Cytobios, 101, pp. 151-159
  • Korsisaari, N., Ross, J., Wu, X., Kowanetz, M., Pal, N., Hall, L., Eastham-Anderson, J., Ferrara, N., Blocking vascular endothelial growth factor-A inhibits the growth of pituitary adenomas and lowers serum prolactin level in a mouse model of multiple endocrine neoplasia type 1 (2008) Clinical Cancer Research, 14 (1), pp. 249-258. , http://clincancerres.aacrjournals.org/cgi/reprint/14/1/249, DOI 10.1158/1078-0432.CCR-07-1552
  • Liang, W.C., Wu, X., Peale, F.V., Lee, C.V., Meng, Y.G., Gutierrez, J., Fu, L., Ferrara, N., Cross-species vascular endothelial growth factor (VEGF)-blocking antibodies completely inhibit the growth of human tumor xenografts and measure the contribution of stromal VEGF (2006) J Biol Chem, 281, pp. 951-961
  • Lloyd, R.V., Scheithauer, B.W., Kuroki, T., Vidal, S., Kovacs, K., Stefaneanu, L., Vascular endothelial growth factor (VEGF) expression in human pituitary adenomas and carcinomas (1999) Endocr Pathol, 10, pp. 229-235
  • Lohrer, P., Gloddek, J., Hopfner, U., Losa, M., Uhl, E., Pagotto, U., Stalla, G.K., Renner, U., Vascular endothelial growth factor production and regulation in rodent and human pituitary tumor cells in vitro (2001) Neuroendocrinology, 74 (2), pp. 95-105. , DOI 10.1159/000054675
  • McCabe, C.J., Boelaert, K., Tannahill, L.A., Heaney, A.P., Stratford, A.L., Khaira, J.S., Hussain, S., Gittoes, N.J., Vascular endothelial growth factor, its receptor KDR/Flk-1, and pituitary tumor transforming gene in pituitary tumors (2002) J Clin Endocrinol Metab, 87, pp. 4238-4244
  • Molitch, M.E., Pharmacologic resistance in prolactinoma patients (2005) Pituitary, 8, pp. 43-52
  • Mori, J., Haisa, M., Naomoto, Y., Takaoka, M., Kimura, M., Yamatsuji, T., Notohara, K., Tanaka, N., Suppression of tumor growth and downregulation of platelet-derived endothelial cell growth factor/thymidine phosphorylase in tumor cells by angiogenesis inhibitor TNP-470 (2000) Japanese Journal of Cancer Research, 91 (6), pp. 643-650
  • Ochoa, A.L., Mitchner, N.A., Paynter, C.D., Morris, R.E., Ben-Jonathan, N., Vascular endothelial growth factor in the rat pituitary: Differential distribution and regulation by estrogen (2000) Journal of Endocrinology, 165 (2), pp. 483-492
  • Onofri, C., Carbia, N.A., Schaaf, L., Feirer, M., Lohrer, P., Stummer, W., Berner, S., Arzt, E., Estradiol Stimulates Vascular Endothelial Growth Factor and Interleukin-6 in Human Lactotroph and Lactosomatotroph Pituitary Adenomas (2004) Experimental and Clinical Endocrinology and Diabetes, 112 (1), pp. 18-23. , DOI 10.1055/s-2004-815722
  • Pellegrini, I., Rasolonjanahary, R., Gunz, G., Bertrand, P., Delivet, S., Jedynak, C.P., Kordon, C., Enjalbert, A., Resistance to bromocriptine in prolactinomas (1989) Journal of Clinical Endocrinology and Metabolism, 69 (3), pp. 500-509
  • Pizarro, C.B., Oliveira, M.C., Pereira-Lima, J.F., Leães, C.G., Kramer, C.K., Schuch, T., Barbosa-Coutinho, L.M., Ferreira, N.P., Evaluation of angiogenesis in 77 pituitary adenomas using endoglin as a marker (2009) Neuropathology, 29, pp. 40-44
  • Reynolds, L.P., Grazul-Bilska, A.T., Redmer, D.A., Angiogenesis in the corpus luteum (2000) Endocrine, 12 (1), pp. 1-9
  • Schechter, J., Ultrastructural changes in the capillary bed of human pituitary tumors (1972) Am J Pathol, 67, pp. 109-126
  • Teunis, M.A., Kavelaars, A., Voest, E., Bakker, J.M., Ellenbroek, B.A., Cools, A.R., Heijnen, C.J., Reduced tumor growth, experimental metastasis formation, and angiogenesis in rats with a hyperreactive dopaminergic system (2002) FASEB J, 16, pp. 1465-1467
  • Turner, H.E., Harris, A.L., Melmed, S., Wass, J.A.H., Angiogenesis in Endocrine Tumors (2003) Endocrine Reviews, 24 (5), pp. 600-632. , DOI 10.1210/er.2002-0008
  • Vidal, S., Lloyd, R.V., Moya, L., Scheithauer, B.W., Kovacs, K., Expression and distribution of vascular endothelial growth factor receptor Flk-1 in the rat pituitary (2002) Journal of Histochemistry and Cytochemistry, 50 (4), pp. 533-540
  • Wulff, C., Wiegand, S.J., Saunders, P.T.K., Scobie, G.A., Fraser, H.M., Angiogenesis during follicular development in the primate and its inhibition by treatment with truncated Flt-1-Fc (Vascular Endothelial Growth Factor TrapA40) (2001) Endocrinology, 142 (7), pp. 3244-3254. , DOI 10.1210/en.142.7.3244

Citas:

---------- APA ----------
Luque, G.M., Perez-Millán, M.I., Ornstein, A.M., Cristina, C. & Becu-Villalobos, D. (2011) . Inhibitory effects of antivascular endothelial growth factor strategies in experimental dopamine-resistant prolactinomas. Journal of Pharmacology and Experimental Therapeutics, 337(3), 766-774.
http://dx.doi.org/10.1124/jpet.110.177790
---------- CHICAGO ----------
Luque, G.M., Perez-Millán, M.I., Ornstein, A.M., Cristina, C., Becu-Villalobos, D. "Inhibitory effects of antivascular endothelial growth factor strategies in experimental dopamine-resistant prolactinomas" . Journal of Pharmacology and Experimental Therapeutics 337, no. 3 (2011) : 766-774.
http://dx.doi.org/10.1124/jpet.110.177790
---------- MLA ----------
Luque, G.M., Perez-Millán, M.I., Ornstein, A.M., Cristina, C., Becu-Villalobos, D. "Inhibitory effects of antivascular endothelial growth factor strategies in experimental dopamine-resistant prolactinomas" . Journal of Pharmacology and Experimental Therapeutics, vol. 337, no. 3, 2011, pp. 766-774.
http://dx.doi.org/10.1124/jpet.110.177790
---------- VANCOUVER ----------
Luque, G.M., Perez-Millán, M.I., Ornstein, A.M., Cristina, C., Becu-Villalobos, D. Inhibitory effects of antivascular endothelial growth factor strategies in experimental dopamine-resistant prolactinomas. J. Pharmacol. Exp. Ther. 2011;337(3):766-774.
http://dx.doi.org/10.1124/jpet.110.177790