Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

A new type of physiologically relevant nitrosamines have been recently recognized, the N1-nitrosoindoles. The possible pathways by which N1-nitrosomelatonin (NOMel) can react in physiological environments have been studied. Our results show that NOMel slowly decomposes spontaneously in aqueous solution, generating melatonin as the main organic product (k = (3.7 ± 1.1) × 10-5 s-1, Tris-HCl (0.2 M) buffer, pH 7.4 at 37°C, anaerobic). This rate is accelerated by acidification (kpH 5.8 = (4.5 ± 0.7) × 10-4 s-1, kpH 8.8 = (3.9 ± 0.6) × 10-6 s-1 Tris-HCl (0.2 M) buffer at 37°C), by the presence of O2 (k o = (9.8 ± 0.1) × 10-5 s-1 pH 7.4, 37°C, [NOMel] = 0.1 mM, P(O2) = 1 atm), and by the presence of the spin trap TEMPO (2,2,6,6-tetramethylpiperidine 1-oxyl; ko = (2.0 ± 0.1) × 10-4 s-1, pH 7.4, 37°C, [NOMel] = 0.1 mM, [TEMPO] = 9 mM). We also found that NOMel can transnitrosate to L-cysteinate, producing S-nitrosocysteine and melatonin (k = 0.127 ± 0.002 M-1 s-1, Tris-HCl (0.2 M) buffer, pH 7.4 at 37°C). The reaction of NOMel with ascorbic acid as a reducing agent has also been studied. This rapid reaction produces nitric oxide and melatonin. The saturation of the observed rate constant (k = (1.08 ± 0.04) × 10-3 s-1, Tris-HCl (0.2 M) buffer, pH 7.4 at 37°C) at high ascorbic acid concentration (100-fold with respect to NOMel) and the pH independence of this reaction in the pH range 7-9 indicate that the reactive species are ascorbate and melatonyl radical originated from the reversible homolysis of NOMel. Taking into account kinetic and DFT calculation data, a comprehensive mechanism for the denitrosation of NOMel is proposed. On the basis of our kinetics results, we conclude that under physiological conditions NOMel mainly reacts with endogenous reducing agents (such as ascorbic acid), producing nitric oxide and melatonin. © 2005 American Chemical Society.

Registro:

Documento: Artículo
Título:Mechanisms of NO release by N1-nitrosomelatonin: Nucleophilic attack versus reducing pathways
Autor:De Biase, P.M.; Turjanski, A.G.; Estrin, D.A.; Doctorovich, F.
Filiación:Departamento de Química Inorgánica, Analitica y Química Fisica/INQUIMAE, Universidad de Buenos Aires/CONICET, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
Palabras clave:Nitric acid; Nitrogen oxides; Oxygen; pH effects; Physiology; Probability density function; Reaction kinetics; Solutions; Ascorbic acid; Melatonin; Nitric oxide; Nitrosoindoles; Nitrosamines; 2,2,6,6 tetramethylpiperidine 1 oxyl; ascorbic acid; cysteine derivative; melatonin; melatonin derivative; methyl group; n nitrosomelatonin; nitric oxide; nitrosamine; oxygen; piperidine derivative; reducing agent; s nitrosocysteine; trometamol; unclassified drug; ascorbic acid; cysteine; drug derivative; melatonin; N1 nitrosomelatonin; N1-nitrosomelatonin; nitroso derivative; s nitrosothiol; S-nitrosocysteine; acidification; aqueous solution; article; chemical reaction; chemical reaction kinetics; concentration (parameters); decomposition; denitrosation; density functional theory; pH; reaction analysis; reduction; chemical model; chemistry; kinetics; metabolism; oxidation reduction reaction; temperature; Ascorbic Acid; Cysteine; Hydrogen-Ion Concentration; Kinetics; Melatonin; Models, Chemical; Nitric Oxide; Nitroso Compounds; Oxidation-Reduction; Oxygen; S-Nitrosothiols; Temperature
Año:2005
Volumen:70
Número:15
Página de inicio:5790
Página de fin:5798
DOI: http://dx.doi.org/10.1021/jo047720z
Título revista:Journal of Organic Chemistry
Título revista abreviado:J. Org. Chem.
ISSN:00223263
CODEN:JOCEA
CAS:ascorbic acid, 134-03-2, 15421-15-5, 50-81-7; melatonin, 73-31-4; nitric oxide, 10102-43-9; nitrosamine, 35576-91-1; oxygen, 7782-44-7; s nitrosocysteine, 51209-75-7; trometamol, 1185-53-1, 77-86-1; cysteine, 4371-52-2, 52-89-1, 52-90-4; Ascorbic Acid, 50-81-7; Cysteine, 52-90-4; Melatonin, 73-31-4; N1-nitrosomelatonin; Nitric Oxide, 10102-43-9; Nitroso Compounds; Oxygen, 7782-44-7; S-nitrosocysteine, 51209-75-7; S-Nitrosothiols
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00223263_v70_n15_p5790_DeBiase

Referencias:

  • Moncada, S., Palmer, R.M.J., Higgs, E.A., (1991) Pharmacol. Rev., 43 (2), pp. 109-142
  • Garbers, D.L., (1999) Methods, 19, pp. 477-484
  • Lucas, K.A., Pitari, G.M., Kazerounian, S., Ruiz-Stewart, I., Park, J., Schulz, S., Chepenik, K.P., Waldman, S.A., (2000) Pharmacol. Rev., 52 (3), pp. 375-414
  • Goldstein, S., Czapski, G., (1996) J. Am. Chem. Soc., 118 (14), pp. 3419-3425
  • Kirsch, M., Fuchs, A., De Groot, H., (2003) J. Biol. Chem., 278 (14), pp. 11931-11936
  • Stamler, J.S., Lamas, S., Fang, F.C., (2001) Cell, 106 (6), pp. 675-683
  • Turjanski, A.G., Chaia, Z.D., Doctorovich, F., Estrin, D., Rosenstein, R., Piro, O.E., (2000) Acta Crystallogr., C, 56, pp. 682-683
  • Turjanski, A.G., Leonik, F., Estrin, D.A., Rosenstein, R.E., Doctorvich, F., (2000) J. Am. Chem. Soc., 122 (42), pp. 10468-10469
  • Turjanski, A.G., Saenz, D.A., Doctorovich, F., Estrin, D.A., Rosenstein, R.E., (2001) J. Pineal Res., 31 (2), pp. 97-101
  • Blanchard-Fillion, B., Servy, C., Ducrocq, C., (2001) Free Radical Res., 35 (6), pp. 857-866
  • Kashiba-Iwatsuki, M., Yamaguchi, M., Inoue, M., (1996) FEBS Lett., 389 (2), pp. 149-152
  • Hallett, G., Williams, D.L.H., (1980) J. Chem. Soc., Perkin Trans. 2, 4, pp. 624-627
  • Sonnenschein, K., De Groot, H., Kirsch, M., (2004) J. Biol. Chem., 279, pp. 45433-45440
  • Al-Mustafa, A.H., Sies, H., Stahl, W., (2001) Toxicology, 163 (2-3), pp. 127-136
  • Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Cheeseman, J.R., Zakrzewski, V.G., Montgomery Jr., J.A., Pople, J.A., (1998) Gaussian 98, Rev. A7, , Gaussian, Inc.: Pittsburgh, PA
  • Cossi, M., Barone, V., Cammi, R., Tomasi, J., (1996) Chem. Phys. Lett., 255, p. 327
  • Meyer, T.A., Williams, D.L.H., Bonnett, R., Ooi, S.L., (1982) J. Chem. Soc., Perkin Trans. 2, 11, pp. 1383-1387
  • Lewis, R.S., Tannenbaum, S.R., Been, W.M., (1995) J. Am. Chem. Soc., 117 (14), pp. 3933-3939
  • Castro, A., Iglesias, E., Leis, J.R., Pena, M.E., Tato, J.V., Williams, D.L.H., (1986) J. Chem. Soc., Perkin Trans. 2, 8, pp. 1165-1168
  • Mahal, H.S., Sharma, H.S., Mukherjee, T., (1999) Free Radical Biol. Med., 26 (5-6), pp. 557-565
  • Jovanovic, S.V., Steenken, S., (1992) J. Phys. Chem., 96 (16), pp. 6674-6679
  • Feelisch, M., Stamler, J., Preparation and detection of S-nitrosothiols (1996) Methods in Nitric Oxide Research, pp. 521-539. , Feelisch, M., Stamler J., Eds.; Wiley: Chichester, New York
  • Williams, D.L.H., (1999) Acc. Chem. Res., 32 (10), pp. 869-876
  • Dicks, A.P., Li, E., Munro, A.P., Swift, H.R., Williams, D.L.H., (1998) Can. J. Chem., 76 (6), pp. 789-794
  • Wong, P.S.Y., Hyun, J., Fukuto, J.M., Shirota, F.N., DeMaster, E.G., Shoeman, D.W., Nagasawa, H.T., (1998) Biochemistry, 37 (16), pp. 5362-5371
  • Patel, H.M.S., Williams, D.L.H., (1990) J. Chem. Soc., Perkin Trans. 2, 1, pp. 37-42
  • Benesch, R.E., Benesch, R., (1955) J. Am. Chem. Soc., 77 (22), pp. 5877-5881
  • Reuben, D.M.E., Bruice, T.C., (1976) J. Am. Chem. Soc., 98 (1), pp. 114-121
  • Perissinotti, L.L., Turjanski, A.G., Estrin, D., Doctorovich, F., (2005) J. Am. Chem. Soc., 127 (2), pp. 486-1467
  • Wang, K., Wen, Z., Zhang, W., Xian, M., Cheng, J.P., Wang, P.G., (2001) Bioorg. Med. Chem. Lett., 11 (3), pp. 433-436
  • Lide, D.R., (1994) HandBook of Chemistry and Physics (1913-1995), 75th Ed., , CRC Press Inc.: Boca Raton, FL
  • Zhu, X.Q., He, J.Q., Li, Q., Xian, M., Lu, J.M., Cheng, J.P., (2000) J. Org. Chem., 65 (20), pp. 6729-6735
  • Stryer, L., (1988) Biochemistry, 3rd Ed., , Reverte: Barcelona
  • Brock, T.D., Madigan, M.T., Martinko, J.M., (1994) Biology of Microorganisms, 7th Ed., , Prentice Hall: Englewood Cliffs, NJ
  • Harris, (1995) Quantitative Chemical Analysis, 4th Ed., , W. H. Freeman & Company. San Francisco, CA
  • Nakamura, K., Aizawa, M., Miyawaki, O., (1998) Electroenzymology. Coenzyme Regeneration, 4. , Springer-Verlag: Berlin
  • Solomon, E.I., Baldwin, M.J., Lowery, M.D., (1992) Chem. Rev., 92 (4), pp. 521-542
  • Carcamo, J.M., Pedraza, A., Borquez-Ojeda, O., Golde, D.W., (2002) Biochemistry, 41 (43), pp. 12995-13002

Citas:

---------- APA ----------
De Biase, P.M., Turjanski, A.G., Estrin, D.A. & Doctorovich, F. (2005) . Mechanisms of NO release by N1-nitrosomelatonin: Nucleophilic attack versus reducing pathways. Journal of Organic Chemistry, 70(15), 5790-5798.
http://dx.doi.org/10.1021/jo047720z
---------- CHICAGO ----------
De Biase, P.M., Turjanski, A.G., Estrin, D.A., Doctorovich, F. "Mechanisms of NO release by N1-nitrosomelatonin: Nucleophilic attack versus reducing pathways" . Journal of Organic Chemistry 70, no. 15 (2005) : 5790-5798.
http://dx.doi.org/10.1021/jo047720z
---------- MLA ----------
De Biase, P.M., Turjanski, A.G., Estrin, D.A., Doctorovich, F. "Mechanisms of NO release by N1-nitrosomelatonin: Nucleophilic attack versus reducing pathways" . Journal of Organic Chemistry, vol. 70, no. 15, 2005, pp. 5790-5798.
http://dx.doi.org/10.1021/jo047720z
---------- VANCOUVER ----------
De Biase, P.M., Turjanski, A.G., Estrin, D.A., Doctorovich, F. Mechanisms of NO release by N1-nitrosomelatonin: Nucleophilic attack versus reducing pathways. J. Org. Chem. 2005;70(15):5790-5798.
http://dx.doi.org/10.1021/jo047720z