Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The physiology of sound production in suboscines is poorly investigated. Suboscines are thought to develop song innately unlike the closely related oscines. Comparing phonatory mechanisms might therefore provide interesting insight into the evolution of vocal learning. Here we investigate sound production and control of sound frequency in the Great Kiskadee (Pitangus sulfuratus) by recording air sac pressure and vocalizations during spontaneously generated song. In all the songs and calls recorded, the modulations of the fundamental frequency are highly correlated to air sac pressure. To test whether this relationship reflects frequency control by changing respiratory activity or indicates synchronized vocal control, we denervated the syringeal muscles by bilateral resection of the tracheosyringeal nerve. After denervation, the strong correlation between fundamental frequency and air sac pressure patterns remained unchanged. A single linear regression relates sound frequency to air sac pressure in the intact and denervated birds. This surprising lack of control by syringeal muscles of frequency in Kiskadees, in strong contrast to songbirds, poses the question of how air sac pressure regulates sound frequency. To explore this question theoretically, we assume a nonlinear restitution force for the oscillating membrane folds in a two mass model of sound production. This nonlinear restitution force is essential to reproduce the frequency modulations of the observed vocalizations. Copyright © 2008 The American Physiological Society.

Registro:

Documento: Artículo
Título:Frequency modulation during song in a suboscine does not require vocal muscles
Autor:Amador, A.; Goller, F.; Mindlin, G.B.
Filiación:Departamento de Física, FCEyN, Universidad de Buenos Aires, Argentina
Department of Biology, University of Utah, Salt Lake City, UT, United States
Palabras clave:air sac; animal behavior; animal experiment; article; bird; breathing; controlled study; denervation; frequency modulation; motor control; nonhuman; pressure; priority journal; singing; songbird; sound; vocalization; algorithm; animal; atmospheric pressure; nonlinear system; physiology; skeletal muscle; songbird; statistical analysis; statistical model; stereotypy; Air Pressure; Algorithms; Animals; Data Interpretation, Statistical; Denervation; Models, Statistical; Muscle, Skeletal; Nonlinear Dynamics; Songbirds; Stereotyped Behavior; Vocalization, Animal
Año:2008
Volumen:99
Número:5
Página de inicio:2383
Página de fin:2389
DOI: http://dx.doi.org/10.1152/jn.01002.2007
Título revista:Journal of Neurophysiology
Título revista abreviado:J. Neurophysiol.
ISSN:00223077
CODEN:JONEA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00223077_v99_n5_p2383_Amador

Referencias:

  • Ames, P.L., The morphology of the syrinx in passerine birds (1971) Bull Peabody Museum Nat History, 37, pp. 1-94
  • Beckers, G.J.L., Suthers, R.A., ten Cate, C., Mechanisms of frequency and amplitude modulation in ring dove song (2003) J Exp Biol, 206, pp. 1833-1843
  • http://www.praat.org, Boersma P, Weenink D. Praat. Doing phonetics by computer Version 4.3.14, Computer program, Retrieved May 26, 2005, from; Bottjer, S.W., Miesner, E.A., Arnold, A.P., Forebrain lesions disrupt development but not maintenance of song in passerine birds (1984) Science, 224, pp. 901-903
  • Brush T, Fitzpatrick JW. Great Kiskadee (Pitangus sulphuratus). In: The Birds of North America, edited by Poole A, Gill F. Philadelphia, PA: The Birds of North America, 2002, No. 622; Chiel, H.J., Beer, R.D., The brain has a body: Adaptive behavior emerges from interactions of nervous system, body and environment (1997) Trends Neurosci, 20, pp. 553-557
  • Daley, M., Goller, F., Tracheal length changes during zebra finch song and their possible role in upper vocal tract filtering (2004) J Neurobiol, 59, pp. 319-330
  • Doupe, A., Kuhl, P., Birdsong and human speech: Common themes and mechanisms (1999) Annu Rev Neurosci, 22, pp. 567-631
  • Elemans, C.P.H., Spierts, I.L.Y., Hendriks, M., Schipper, H., Müller, U.K., van Leeuwen, J.L., Syringeal muscles fit the trill in ring doves (2006) J Exp Biol, 209, pp. 965-977
  • Farries, M.A., The avian song system in comparative perspective (2004) Ann NY Acad Sci, 1016, pp. 61-76
  • Gardner, T.J., Cecchi, G., Magnasco, M., Laje, R., Mindlin, G.B., Simple motor gestures for birdsongs (2001) Phys Rev Lett 87, (1-4). , art 208101
  • Gaunt, A.S., An hypothesis concerning the relationship of syringeal structure to vocal abilities (1983) Auk, 100, pp. 853-862
  • Gaunt, A.S., Gaunt, S.L.L., Mechanics of the syrinx in Gallus gallus. II. Electromyographic studies of ad libitum vocalizations (1977) J Morphol, 152, pp. 1-20
  • Gaunt, A.S., Gaunt, S.L.L., Electromyographic studies of the syrinx in parrots (Aves, Psittacidae) (1985) Zoomorphology, 105, pp. 1-11
  • Gaunt, A.S., Gaunt, S.L.L., Casey, R.M., Syringeal mechanics reassessed: Evidence from Streptopelia (1982) Auk, 99, pp. 474-494
  • Goller, F., Suthers, R.A., Role of syringeal muscles in gating airflow and sound production in singing brown thrashers (1996) J Neurophysiol, 75, pp. 867-876
  • Goller, F., Suthers, R.A., Role of syringeal muscles in controlling the phonology of bird song (1996) J Neurophysiol, 76, pp. 287-300
  • Jarvis ED. Brains and birdsong. In Nature's Music. The Science of Birdsong, edited by Marler P, Slabbekoorn H. Amsterdam: Elsevier Academic, 2004, p. 226-271; Jarvis, E.D., Ribeiro, S., da Silva, M.L., Ventura, D., Vielliardk, J., Mello, C.V., Behaviorally driven gene expression reveals song nuclei in hummingbird brain (2000) Nature, 406, pp. 629-632
  • Jürgens, U., Hast, M., Pratt, R., Effects of laryngeal nerve transection on squirrel monkey calls (2004) J Comp Physiol [A], 123, pp. 23-29
  • Kent, R.D., (1997) The Speech Sciences, , San Diego: Singular Publishing Group
  • Kleinbaum DG, Kupper LL. Applied Regression Analysis and Other Multivariable Methods. N. Scituate, MA: Duxbury, 1978; Kroodsma, D.E., Songs of the alder flycatcher (Empidonax alnorum) and willow flycatcher (Empidonax traillii) are innate (1984) Auk, 101, pp. 13-24
  • Kroodsma DE. The diversity and plasticity of birdsong. In: Nature's Music. The Science of Birdsong, edited by Marler P, Slabbekoorn H. Amsterdam: Elsevier Academic, 2004, p. 108-131; Kroodsma, D.E., Konishi, M., A suboscine bird (eastern phoebe, Sayornis phoebe) develops normal song without auditory feedback (1991) Anim Behav, 42, pp. 477-487
  • Laje R, Gardner TJ, Mindlin GB. Neuromuscular control of vocalizations in birdsong: a model. Phys Rev E 65: art. 051921, 2002; Larsen, O.N., Goller, F., Direct observation of syringeal muscle function in songbirds and a parrot (2002) J Exp Biol, 205, pp. 25-35
  • Mindlin, G.B., Laje, R., (2005) The Physics of Birdsong, pp. 1-5. , Berlin, Germany: Springer Verlag
  • Mindlin, G.B., Gardner, T.J., Goller, F., Suthers, R.A., Experimental support for a model of birdsong production (2003) Phys Rev E, 68, p. 041908
  • Miskimen, M., The syrinx in certain tyrant flycatchers (1963) Auk, 80, pp. 156-165
  • Nottebohm, F., Neural lateralization of vocal control in a passerine bird. I. Song (1971) J Exp Zool, 177, pp. 229-262
  • Nottebohm, F., Brain pathways for vocal learning in birds: A review of the first 10 years (1980) Progress Psychobiol Physiol Psychol, 9, pp. 85-124
  • Nottebohm, F., The road we traveled. Discovery, choreography, and significance of brain replaceable neurons (2004) Ann NY Acad Sci, 1016, pp. 628-658
  • Nottebohm, F., Nottebohm, M.E., Left hypoglossal dominance in the control of canary and white-crowned sparrow song (1976) J Comp Physiol, 108, pp. 171-192
  • Peek, F.W., An experimental study of the territorial function of vocal and visual display in the male red-winged blackbird (Agelaius phoeniceus) (1972) Anim Behav, 20, pp. 112-118
  • Scharff, C., Nottebohm, F., A comparative study of the behavioral deficits following lesions of various parts of the zebra finch song system: Implications for vocal learning (1991) J Neurosci, 11, pp. 2896-2913
  • Seller, T.J., Unilateral nervous control of the syrinx in java sparrows (Padda oryzivora) (1979) J Comp Physiol, 129, pp. 281-288
  • Simpson, H.B., Vicario, D.S., Brain pathways for learned and unlearned vocalizations differ in zebra finches (1990) J Neurosci, 10, pp. 1541-1556
  • Smith, D.G., An experimental analysis of the function of red-winged blackbird song (1976) Behaviour, 56, pp. 135-156
  • Steinecke, I., Herzel, H., Bifurcations in an asymmetric vocal-fold model (1995) J Acoust Soc Am, 97, pp. 1874-1884
  • Suthers, R.A., Peripheral vocal mechanisms in birds: Are songbirds special? (2001) Neth J Zool, 51, pp. 217-242
  • Suthers, R.A., Fattu, J.M., Mechanisms of sound production by echolocating bats (1973) Am Zool, 13, pp. 1215-1226
  • Suthers, R.A., Goller, F., Motor correlates of vocal diversity in songbirds (1997) CurrOrnithol, 14, pp. 235-288
  • Suthers RA, Goller F, Pytte C. The neuromuscular control of birdsong. Phil Trans R Soc Lond Biol Sci 354: 927-939, 1999; Suthers, R.A., Zollinger, S.A., Producing song: The vocal apparatus (2004) Ann NY Acad Sci, 1016, pp. 109-129
  • Vicario, D.S., Contributions of syringeal muscles to respiration and vocalization in the zebra finch (1991) J Neurobiol, 22, pp. 63-73
  • Wild, M., Functional neuroanatomy of the sensorimotor control of singing (2004) Ann NY Acad Sci, 1016, pp. 438-462
  • Youngren, O.M., Peek, F.W., Phillips, R.E., Rpetitive vocalizations evoked by local electrical stimulation of avian brains (1974) Brain Behav Evol, 9, pp. 393-421
  • Zaccarelli, R., Elemans, C.P.H., Fitch, W., Herzel, H., Modelling bird songs: Voice onset, overtones, and registers (2006) Acta Acustica Acustica, 92, pp. 741-748

Citas:

---------- APA ----------
Amador, A., Goller, F. & Mindlin, G.B. (2008) . Frequency modulation during song in a suboscine does not require vocal muscles. Journal of Neurophysiology, 99(5), 2383-2389.
http://dx.doi.org/10.1152/jn.01002.2007
---------- CHICAGO ----------
Amador, A., Goller, F., Mindlin, G.B. "Frequency modulation during song in a suboscine does not require vocal muscles" . Journal of Neurophysiology 99, no. 5 (2008) : 2383-2389.
http://dx.doi.org/10.1152/jn.01002.2007
---------- MLA ----------
Amador, A., Goller, F., Mindlin, G.B. "Frequency modulation during song in a suboscine does not require vocal muscles" . Journal of Neurophysiology, vol. 99, no. 5, 2008, pp. 2383-2389.
http://dx.doi.org/10.1152/jn.01002.2007
---------- VANCOUVER ----------
Amador, A., Goller, F., Mindlin, G.B. Frequency modulation during song in a suboscine does not require vocal muscles. J. Neurophysiol. 2008;99(5):2383-2389.
http://dx.doi.org/10.1152/jn.01002.2007