Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Electrical synapses play significant roles in neural processing in invertebrate and vertebrate nervous systems. The view of electrical synapses as plain bidirectional intercellular channels represents a partial picture because rectifying electrical synapses expand the complexity in the communication capabilities of neurons. Rectification derives, mostly, from the sensitivity of electrical junctions to the transjunctional potential (Vj) across the coupled cells. We analyzed the characteristics of this sensitivity and their effect on neuronal signaling, studying rectifying junctions present in the leech nervous system. The NS neurons, a pair of premotor nonspiking neurons present in each midbody ganglion, are electrically coupled to virtually every excitatory motor neuron. Studied at rest, only hyperpolarizing signals can be transmitted from NS to the motoneurons, and only depolarizing signals are conducted in the opposite direction. Our results show that small changes in the NS membrane potential (Vm) exerted an effective control of the firing frequency of the CV motoneurons (excitor of circular muscles). This effect revealed the existence of a threshold Vj across which the electrical synapse shifts from a nonconducting to a conducting state. The junction can operate as a relatively symmetrical bidirectional bridge provided that the transmitted signals do not cross this threshold transjunctional potential. Copyright © 2007 The American Physiological Society.

Registro:

Documento: Artículo
Título:In situ characterization of a rectifying electrical junction
Autor:Rela, L.; Szczupak, L.
Filiación:Instituto de Fisiología Y Biología Molecular Y Neurociencias, Consejo Nacional de Investigaciones Científicas Y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
Dto. Fisiología, Biología Molecular Y Celular, FCEN-UBA, Ciudad Universitaria, Pabellón II, 1428 Buenos Aires, Argentina
Palabras clave:animal tissue; article; excitatory junction potential; ganglion; hyperpolarization; motoneuron; nerve cell; nerve cell membrane potential; nerve conduction; nervous system; neurotransmission; nonhuman; priority journal; signal transduction; synapse; Animals; Electric Stimulation; Electrophysiology; Fluorescent Dyes; Hirudo medicinalis; Membrane Potentials; Microscopy, Fluorescence; Motor Neurons; Patch-Clamp Techniques; Software; Synapses
Año:2007
Volumen:97
Número:2
Página de inicio:1405
Página de fin:1412
DOI: http://dx.doi.org/10.1152/jn.00973.2006
Título revista:Journal of Neurophysiology
Título revista abreviado:J. Neurophysiol.
ISSN:00223077
CODEN:JONEA
CAS:Fluorescent Dyes
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00223077_v97_n2_p1405_Rela

Referencias:

  • Acklin, S.E., Electrical properties and anion permeability of doubly rectifying junctions in the leech central nervous system (1988) J Exp Biol, 137, pp. 1-11
  • Auerbach, A.A., Bennett, M.V.L., A rectifying electrotonic synapse in the central nervous system of a vertebrate (1969) J Gen Physiol, 53, pp. 211-237
  • Barrio, L.C., Suchyna, T., Bargiello, T., Xu, L.X., Roginski, R.S., Bennett, M.V.L., Nicholson, B.J., Gap junctions formed by connexins 26 and 32 alone and in combination are differently affected by applied voltage (1991) Proc Natl Acad Sci USA, 88, pp. 8410-8414
  • Baylor, D.A., Nicholls, J.G., Chemical and electrical synaptic connexions between cutaneous mechanoreceptor neurons in the central nervous system of the leech (1969) J Physiol, 203, pp. 591-609
  • Bennett, M.V.L., Gap junctions as electrical synapses (1997) journal of Neurocytology, 26, pp. 349-366
  • Bukauskas, F.F., Elfgang, C., Willecke, K., Weingart, R., Heterotypic gap junction channels (connexin26-connexin32) violate the paradigm of unitary conductance (1995) Eur J Physiol, 429, pp. 870-872
  • Calviño, M.A., Iscla, I.R., Szczupak, L., Selective serotonin reuptake inhibitors induce spontaneous international activity in the leech nervous system (2005) J Neurophysiol, 93, pp. 2644-2655
  • Dykes, I.M., Freeman, F.M., Bacon, J.P., Davis, J.A., Molecular basis of gap junctional communication in the CNS of the leech Hirudo medicinalis (2004) J Neurosci, 24, pp. 886-894
  • Dykes, I.M., Macagno, E.R., Molecular characterization and embryonic expression of innexins in the leech Hirudo medicinalis (2005) Dev Genes Evol, 216, pp. 185-197
  • Edwards, D.H., Heitler, W.J., Krasne, F.B., Fifty years of a command neuron: The neurobiology of escape behavior in the crayfish (1999) Trends Neurosci, 22, pp. 153-161
  • Fernandez de Miguel, F., Vargas-Caballero, M., Garcia-Perez, E., Spread of synaptic potentials through electrical synapses in retzius neurons of the leech (2001) J Exp Biol, 204, pp. 3241-3250
  • Furshpan, E.J., Potter, D.D., Transmission at the giant motor synapses of the crayfish (1959) J Physiol, 145, pp. 289-325
  • Galarreta, M., Hestrin, S., Electrical synapses between GABA-releasing interneurons (2001) Nat Rev Neurosci, 2, pp. 425-433
  • Giaume, C., Korn, H., Bidirectional transmission at the rectifying electrotonic synapse: A voltage-dependent process (1983) Science, 220, pp. 84-87
  • Giaume C, Korn H. Junctional voltage-dependence at the crayfish rectifying synapse.w. In: Gap Junctions, edited by Bennett MVL, Spray DC. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory, 1985, p. 367-379; Harris, A.L., Spray, D.C., Bennett, M.V.L., Control of intercellular communication by voltage dependence of gap junctional conductance (1983) J Neurosci, 3, pp. 79-100
  • Heitler, W.J., Frasr, K., Edwards, D.H., Different types of rectification at electrical synapses made by a single crayfish neuron investigated experimentally and by a computer simulation (1991) J Comp Physiol [A], 169, pp. 707-718
  • Hormuzdi, S.G., Filippov, M.A., Mitropoulou, G., Monyer, H., Bruzzone, R.E., lectrical synapses: A dynamic signaling system that shapes the activity of neuronal networks (2004) Biomed Biophys Acta, 1662, pp. 113-137
  • Iscla, I.R., Arini, P.D., Szczupak, L., Differential channeling of sensory stimuli onto a motor neuron in the leech (1999) J Comp Physiol, 184, pp. 233-241
  • Jaslove, S.W., Brink, P.R., The mechanism of rectification at the electrotonic motor giant synapse of the crayfish (1986) Nature, 323, pp. 63-65
  • Kumar, N.M., Gilula, N.B., The gap junction communication channel (1996) Cell, 84, pp. 381-388
  • Landesman, Y., White, T.W., Starich, T.A., Shaw, J.E., Goodenough, D.A., Paul, D.L., Innexin-3 forms connexin-like intercellular channels (1999) J Cell Sci, 112, pp. 2391-2396
  • Llinás, R., Baker, R., Sotelo, C., Electrotonic coupling between neurons in the cat inferior olive (1974) J Neurophysiol, 37, pp. 560-571
  • Mann-Metzer, P., Yarom, Y., Electrotonic coupling interacts with intrinsic properties to generate synchronized activity in cerebellar networks of inhibitory interneurons (1999) J Neurosci, 19, pp. 3298-3306
  • Marín Burgin, A., Eisenhart, F.J., Baca, S.M., Kristan, W.B., French, K.A., Sequential development of electrical and chemical synaptic connections generates a specific behavior circuit in the leech (2005) J Neurosci, 25, pp. 2478-2489
  • Marín Burgin, A., Eisenhart, F.J., Kristan, W.B., French, K.A., Embryonic electrical connections appear to prefigure a behavioral circuit in the leech CNS (2006) J Comp Physiol [A], 192, pp. 123-133
  • Moreno, A.P., Eghbali, B., Spray, D.C., Connexin32 gap junction channels in stably transfected cells. Equillibrium and kinetic properties (1991) Biophys J, 60, pp. 1267-1277
  • Muller, K.J., Nicholls, J.G., Stent, G.S., (1981) Neurobiology of the Leech, , Cold Spring Harbor, NY: Cold Spring Harbor Laboratory
  • Nicholls, J.G., Purves, D., Monosynaptic chemical and electrical connexions between sensory and motor cells in the central nervous system of the leech (1970) J Physiol, 209, pp. 647-667
  • Obaid, A.L., Socolar, S.J., Rose, B., Cell-to-cell channels with two independently regulated gates in series: Analysis of junctional conductance modulation by membrane potential, calcium and pH (1983) Membr Biol, 73, pp. 69-89
  • Oh, S., Rubin, J.B., Bennett, M.V.L., Verselis, V.K., Bargiello, T.A., Molecular determinants of electrical rectification of single channel conductance in gap junctions formed by connexins 26 and 32 (1999) J Gen Physiol, 114, pp. 339-364
  • Rela, L., Szczupak, L., Coactivation of motoneurons regulated by a network combining electrical and chemical synapses (2003) J Neurosci, 23, pp. 682-692
  • Rela, L., Szczupak, L., Gap junctions: The importance for the dynamics of neural circuits (2004) Mol Neurobiol, 30, pp. 341-357
  • Revilla, A., Bennett, M.V.L., Barrio, L.C., Molecular determinants of membrane potential dependence in vertebrate gap junction channels (2000) Proc Natl Acad Sci USA, 97, pp. 14760-14765
  • Sprent, P., Smeeton, N.C., (2001) Applied Nonparametric Statistical Methods, , 3rd ed, Boca Raton, FL: Chapman and Hall/CRC
  • Spray, D.C., Harris, A.L., Bennett, M.V.L., Voltage dependence of junctional conductance in early amphybian embryos (1979) Science, 204, pp. 432-434
  • Verselis, V.K., Bennett, M.V.L., Bargiello, T.A., A voltage-dependent gap junction in Drosophila melanogaster (1991) Biophys J, 59, pp. 114-126
  • Verselis, V.K., Ginter, C.S., Bargiello, T.A., Opposite voltage gating polarities of two closely related connexins (1994) Nature, 368, pp. 348-351
  • Veruki, M.L., Hartveit, E., AII (rod) amacrine cells form a network of electrically coupled interneurons in the mammalian retina (2002) Neuron, 33, pp. 935-946
  • Wadepuhl, M., Depression of excitatory motoneurons by a single neurone in the leech central nervous system (1989) J Exp Biol, 143, pp. 509-527

Citas:

---------- APA ----------
Rela, L. & Szczupak, L. (2007) . In situ characterization of a rectifying electrical junction. Journal of Neurophysiology, 97(2), 1405-1412.
http://dx.doi.org/10.1152/jn.00973.2006
---------- CHICAGO ----------
Rela, L., Szczupak, L. "In situ characterization of a rectifying electrical junction" . Journal of Neurophysiology 97, no. 2 (2007) : 1405-1412.
http://dx.doi.org/10.1152/jn.00973.2006
---------- MLA ----------
Rela, L., Szczupak, L. "In situ characterization of a rectifying electrical junction" . Journal of Neurophysiology, vol. 97, no. 2, 2007, pp. 1405-1412.
http://dx.doi.org/10.1152/jn.00973.2006
---------- VANCOUVER ----------
Rela, L., Szczupak, L. In situ characterization of a rectifying electrical junction. J. Neurophysiol. 2007;97(2):1405-1412.
http://dx.doi.org/10.1152/jn.00973.2006