Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The motor pathway responsible for the complex vocalizations of songbirds has been extensively characterized, both in terms of intrinsic and synaptic physiology in vitro and in terms of the spatiotemporal patterns of neural activity in vivo. However, the relationship between the neural architecture of the song motor pathway and the acoustic features of birdsong is not well understood. Using a computational model of the song motor pathway and the songbird vocal organ, we investigate the relationship between song production and the neural connectivity of nucleus HVc (used as a proper name) and the robust nucleus of the archistriatum (RA). Drawing on recent experimental observations, our neural model contains a population of sequentially bursting HVc neurons driving the activity of a population of RA neurons. An important focus of our investigations is the contribution of intrinsic circuitry within RA to the acoustic output of the model. We find that the inclusion of inhibitory interneurons in the model can substantially influence the features of song syllables, and we illustrate the potential for subharmonic behavior in RA in response to forcing by HVc neurons. Our results demonstrate the association of specific acoustic features with specific neural connectivities and support the view that intrinsic circuitry within RA may play a critical role in generating the features of birdsong.

Registro:

Documento: Artículo
Título:Mapping neural architectures onto acoustic features of birdsong
Autor:Abarbanel, H.D.I.; Gibb, L.; Mindlin, G.B.; Talathi, S.
Filiación:Department of Physics, University of California, San Diego, CA 92093-0402, United States
Marine Physical Laboratory, Scripps Institution of Oceanography, University of California, San Diego, CA 92093-0402, United States
Institute for Nonlinear Science, University of California, San Diego, CA 92093-0402, United States
Departamento de Física, Fac. de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Institute for Nonlinear Science, University of California, 9500 Gilman Dr., San Diego, CA 92093-0402, United States
Palabras clave:acoustics; archistriatum; article; birdsong; brain mapping; computer model; corpus striatum; Hodgkin Huxley equation; in vitro study; in vivo study; interneuron; motor nerve; nerve conduction; neural architecture; nucleus hvc; priority journal; robust nucleus; singing; songbird; synapse; vocal cord; vocalization; Action Potentials; Animals; Brain Mapping; Nerve Net; Prosencephalon; Songbirds; Vocalization, Animal
Año:2004
Volumen:92
Número:1
Página de inicio:96
Página de fin:110
DOI: http://dx.doi.org/10.1152/jn.01146.2003
Título revista:Journal of Neurophysiology
Título revista abreviado:J. Neurophysiol.
ISSN:00223077
CODEN:JONEA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00223077_v92_n1_p96_Abarbanel

Referencias:

  • Brainard, M.S., Doupe, A.J., What songbirds teach us about learning (2002) Nature, 417, pp. 351-358
  • Catchpole, C.K., Slater, P.J., (1995) Bird Song, Biological Themes and Variations, , Cambridge, UK: Cambridge Univ. Press
  • Chi, Z., Margoliash, D., Temporal precision and temporal drift in brain and behavior of zebra finch song (2001) Neuron, 32, pp. 899-910
  • Doupe, A.J., Kuhl, P.K., Birdsong and human speech: Common themes and mechanisms (1999) Annu Rev Neurosci, 22, pp. 567-631
  • Dutar, P., Vu, H.M., Perkel, D.J., Multiple cell types distinguished by physiological, pharmacological, and anatomic properties in nucleus HVc of the adult zebra finch (1998) J Neurophysiol, 80, pp. 1828-1838
  • Fee, M.S., Shraiman, B., Pesaran, B., Mitra, P.P., The role of nonlinear dynamics of the syrinx in the vocalizations of a songbird (1998) Nature, 395, pp. 67-71
  • Gardner, T., Cecchi, G., Magnasco, M., Laje, R., Mindlin, G.B., Simple motor gestures for birdsongs (2001) Phys Rev Lett, 87, p. 208101
  • Goller, F., Suthers, R.A., Role of syringeal muscles in gating airflow and sound production in singing brown thrashers (1996) J Neurophysiol, 75, pp. 867-876
  • Guckenheimer, J., Holmes, P., (1983) Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, , New York: Springer-Verlag
  • Hahnloser, R.H., Kozhevnikov, A.A., Fee, M.S., An ultra-sparse code underlies the generation of neural sequences in a songbird (2002) Nature, 419, pp. 65-70
  • Herrmann, K., Arnold, A.P., The development of afferent projections to the robust archistriatal nucleus in male zebra finches: A quantitative electron microscopic study (1991) J Neurosci, 11, pp. 2063-2074
  • Kittelberger, J.M., Mooney, R., Lesions of an avian forebrain nucleus that disrupt song development alter synaptic connectivity and transmission in the vocal premotor pathway (1999) J Neurosci, 19, pp. 9385-9398
  • Kubota, M., Saito, N., Sodium- and calcium-dependent conductances of neurones in the zebra finch hyperstriatum ventrale pars caudale in vitro (1991) J Physiol, 440, pp. 131-142
  • Kubota, M., Saito, N., NMDA receptors participate differentially in two different synaptic inputs in neurons of the zebra finch robust nucleus of the archistriatum in vitro (1991) Neurosci Lett, 125, pp. 107-109
  • Kubota, M., Taniguchi, I., Electrophysiological characteristics of classes of neuron in the HVc of the zebra finch (1998) J Neurophysiol, 80, pp. 914-923
  • Laje, R., Gardner, T.J., Mindlin, G.B., Neuromuscular control of vocalizations in birdsong: A model (2002) Phys Rev E, 65, p. 051921
  • Laje, R., Mindlin, G.B., Diversity within a birdsong (2002) Phys Rev Lett, 89, p. 288102
  • McCasland, J.S., Konishi, M., Interaction between auditory and motor activities in an avian song control nucleus (1981) Proc Natl Acad Sci USA, 78, pp. 7815-7819
  • Mindlin, G.B., Gardner, T.J., Goller, F., Suthers, R., Experimental support for a model of birdsong production (2003) Phys Rev E, 68, p. 041908
  • Mooney, R., Synaptic basis for developmental plasticity in a birdsong nucleus (1992) J Neurosci, 12, pp. 2464-2477
  • Mooney, R., Different subthreshold mechanisms underlie song selectivity in identified HVc neurons of the zebra finch (2000) J Neurosci, 20, pp. 5420-5436
  • Mooney, R., Konishi, M., Two distinct inputs to an avian song nucleus activate different glutamate receptor subtypes on individual neurons (1991) Proc Natl Acad Sci USA, 88, pp. 4075-4079
  • Nottebohm, F., Birdsong's clockwork (2002) Nat Neurosci, 5, pp. 925-926
  • Nottebohm, F., Stokes, T.M., Leonard, C.M., Central control of song in the canary, Serinus canarius (1976) J Comp Neurol, 165, pp. 457-486
  • Perkel, D.J., Effects of neuromodulators on excitatory synaptic transmission in nucleus RA of the zebra finch (1995) Soc Neurosci Abstr, 21, p. 960
  • Perkel, D.J., Farries, M.A., Luo, M., Ding, L., Electrophysiological analysis of a songbird basal ganglia circuit essential for vocal plasticity (2002) Brain Res Bull, 57, pp. 529-532
  • Spiro, J.E., Dalva, M.B., Mooney, R.J., Long-range inhibition within the zebra finch song nucleus RA can coordinate the firing of multiple projection neurons (1999) J Neurophysiol, 81, pp. 3007-3020
  • Stark, L.L., Perkel, D.J., Two-stage, input-specific synaptic maturation in a nucleus essential for vocal production in the zebra finch (1999) J Neurosci, 19, pp. 9107-9116
  • Sturdy, C.B., Wild, J.M., Mooney, R., Respiratory and telencephalic modulation of vocal motor neurons in the zebra finch (2003) J Neurosci, 23, pp. 1072-1086
  • Suthers, R.A., Margoliash, D., Motor control of birdsong (2002) Curr Opin Neurobiol, 12, pp. 684-690
  • Titze, I.R., The physics of small-amplitude oscillation of the vocal folds (1988) J Acoust Soc Am, 83, pp. 1536-1552
  • Vicario, D.S., A new brain stem pathway for vocal control in the zebra finch song system (1993) Neuroreport, 4, pp. 983-986
  • Vicario, D.S., Raksin, J.N., Possible roles of GABAergic inhibition in the vocal control system of the zebra finch (2000) Neuroreport, 11, pp. 3631-3635
  • Vu, E.T., Mazurek, M.E., Kuo, Y.C., Identification of a forebrain motor programming network for the learned song of zebra finches (1994) J Neurosci, 14, pp. 6924-6934
  • Wild, J.M., Descending projections of the songbird nucleus robustus archistriatalis (1993) J Comp Neurol, 338, pp. 225-241
  • Yu, A.C., Margoliash, D., Temporal hierarchical control of singing in birds (1996) Science, 273, pp. 1871-1875

Citas:

---------- APA ----------
Abarbanel, H.D.I., Gibb, L., Mindlin, G.B. & Talathi, S. (2004) . Mapping neural architectures onto acoustic features of birdsong. Journal of Neurophysiology, 92(1), 96-110.
http://dx.doi.org/10.1152/jn.01146.2003
---------- CHICAGO ----------
Abarbanel, H.D.I., Gibb, L., Mindlin, G.B., Talathi, S. "Mapping neural architectures onto acoustic features of birdsong" . Journal of Neurophysiology 92, no. 1 (2004) : 96-110.
http://dx.doi.org/10.1152/jn.01146.2003
---------- MLA ----------
Abarbanel, H.D.I., Gibb, L., Mindlin, G.B., Talathi, S. "Mapping neural architectures onto acoustic features of birdsong" . Journal of Neurophysiology, vol. 92, no. 1, 2004, pp. 96-110.
http://dx.doi.org/10.1152/jn.01146.2003
---------- VANCOUVER ----------
Abarbanel, H.D.I., Gibb, L., Mindlin, G.B., Talathi, S. Mapping neural architectures onto acoustic features of birdsong. J. Neurophysiol. 2004;92(1):96-110.
http://dx.doi.org/10.1152/jn.01146.2003