Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Highly coordinated learned behaviors are key to understanding neural processes integrating the body and the environment. Birdsong production is a widely studied example of such behavior in which numerous thoracic muscles control respiratory inspiration and expiration: the muscles of the syrinx control syringeal membrane tension, while upper vocal tract morphology controls resonances that modulate the vocal system output. All these muscles have to be coordinated in precise sequences to generate the elaborate vocalizations that characterize an individual's song. Previously we used a low-dimensional description of the biomechanics of birdsong production to investigate the associated neural codes, an approach that complements traditional spectrographic analysis. The prior study used algorithmic yet manual procedures to model singing behavior. In the present work, we present an automatic procedure to extract low-dimensional motor gestures that could predict vocal behavior. We recorded zebra finch songs and generated synthetic copies automatically, using a biomechanical model for the vocal apparatus and vocal tract. This dynamical model described song as a sequence of physiological parameters the birds control during singing. To validate this procedure, we recorded electrophysiological activity of the telencephalic nucleus HVC. HVC neurons were highly selective to the auditory presentation of the bird's own song (BOS) and gave similar selective responses to the automatically generated synthetic model of song (AUTO). Our results demonstrate meaningful dimensionality reduction in terms of physiological parameters that individual birds could actually control. Furthermore, this methodology can be extended to other vocal systems to study fine motor control. © 2015 the American Physiological Society.

Registro:

Documento: Artículo
Título:Automatic reconstruction of physiological gestures used in a model of birdsong production
Autor:Boari, S.; Perl, Y.S.; Amador, A.; Margoliash, D.; Mindlin, G.B.
Filiación:Department of Physics, FCEN, University of Buenos Aires and IFIBA, CONICET, Buenos Aires, Argentina
Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, United States
Palabras clave:Bird’s own song; Dynamical systems; Modeling software; Peripheral vocal production model; Vocal learning; animal experiment; Article; automation; biomechanics; breathing muscle; dynamics; electrophysiology; gesture; male; morphology; motor control; nonhuman; priority journal; Taeniopygia guttata; telencephalon; vocal cord; vocalization; action potential; animal; animal structures; automated pattern recognition; biological model; computer simulation; finch; high vocal center; nerve cell; physiology; procedures; sound; sound detection; trachea; vocalization; Action Potentials; Animal Structures; Animals; Computer Simulation; Finches; High Vocal Center; Models, Neurological; Neurons; Pattern Recognition, Automated; Sound; Sound Spectrography; Trachea; Vocalization, Animal
Año:2015
Volumen:114
Número:5
Página de inicio:2912
Página de fin:2922
DOI: http://dx.doi.org/10.1152/jn.00385.2015
Título revista:Journal of Neurophysiology
Título revista abreviado:J. Neurophysiol.
ISSN:00223077
CODEN:JONEA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00223077_v114_n5_p2912_Boari

Referencias:

  • Akutagawa, E., Konishi, M., New brain pathways found in the vocal control system of a songbird (2010) J Comp Neurol, 518, pp. 3086-3100
  • Amador, A., Margoliash, D., A mechanism for frequency modulation in songbirds shared with humans (2013) J Neurosci, 33, pp. 11136-11144
  • Amador, A., Mindlin, G.B., Beyond harmonic sounds in a simple model for birdsong production (2008) Chaos, 18
  • Amador, A., Perl, Y.S., Mindlin, G.B., Margoliash, D., Elemental gesture dynamics are encoded by song premotor cortical neurons (2013) Nature, 495, pp. 59-64
  • Bauer, E.E., Coleman, M.J., Roberts, T.F., Roy, A., Prather, J.F., Mooney, R., A synaptic basis for auditory-vocal integration in the songbird (2008) J Neurosci, 28, pp. 1509-1522
  • Cardin, J.A., Schmidt, M.F., Song system auditory responses are stable and highly tuned during sedation, rapidly modulated and unselective during wakefulness, and suppressed by arousal (2003) J Neurophysiol, 90, pp. 2884-2899
  • Cardin, J.A., Schmidt, M.F., Auditory responses in multiple sensorimotor song system nuclei are co-modulated by behavioral state (2004) J Neurophysiol, 91, pp. 2148-2163
  • Coleman, M.J., Roy, A., Wild, J.M., Mooney, R., Thalamic gating of auditory responses in telencephalic song control nuclei (2007) J Neurosci, 27, pp. 10024-10036
  • Dave, A.S., Margoliash, D., Song replay during sleep and computational rules for sensorimotor vocal learning (2000) Science, 290, pp. 812-816
  • Dave, A.S., Yu, A.C., Margoliash, D., Behavioral state modulation of auditory activity in a vocal motor system (1998) Science, 282, pp. 2250-2254
  • De Cheveigne, A., Kawahara, H., YIN, a fundamental frequency estimator for speech and music (2002) J Acoust Soc Am, 111, pp. 1917-1930
  • Doupe, A.J., Konishi, M., Song-selective auditory circuits in the vocal control system of the zebra finch (1991) Proc Natl Acad Sci USA, 88, pp. 11339-11343
  • Fee, M.S., Kozhevnikov, A.A., Hahnloser, R.H., Neural mechanisms of vocal sequence generation in the songbird (2004) Ann NY Acad Sci, 1016, pp. 153-170
  • Fletcher, N.H., Riede, T., Suthers, R.A., Model for vocalization by a bird with distensible vocal cavity and open beak (2006) J Acoust Soc Am, 119, pp. 1005-1011
  • Fukushima, M., Saunders, R.C., Fujii, N., Averbeck, B.B., Mishkin, M., Modeling vocalization with ECoG cortical activity recorded during vocal production in the macaque monkey (2014) Conf Proc IEEE Eng Med Biol Soc, 2014, pp. 6794-6797
  • Gardner, T., Cecchi, G., Magnasco, M., Laje, R., Mindlin, G.B., Simple motor gestures for birdsongs (2001) Phys Rev Lett, 8720
  • Goller, F., Suthers, R.A., Role of syringeal muscles in controlling the phonology of bird song (1996) J Neurophysiol, 76, pp. 287-300
  • Goller, F., Suthers, R.A., Role of syringeal muscles in gating airflow and sound production in singing brown thrashers (1996) J Neurophysiol, 75, pp. 867-876
  • Guckenheimer, J., Holmes, P., (1997) Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, , New York: Springer
  • Hahnloser, R.H., Kozhevnikov, A.A., Fee, M.S., An ultra-sparse code underlies the generation of neural sequences in a songbird (2002) Nature, 419, pp. 65-70
  • Keller, G.B., Hahnloser, R.H., Neural processing of auditory feedback during vocal practice in a songbird (2009) Nature, 457, pp. 187-190
  • Laje, R., Gardner, T.J., Mindlin, G.B., Neuromuscular control of vocalizations in birdsong: A model (2002) Phys Rev E Stat Nonlin Soft Matter Phys, 65
  • Mandelblat-Cerf, Y., Las, L., Denisenko, N., Fee, M.S., A role for descending auditory cortical projections in songbird vocal learning (2014) eLife, 3
  • Margoliash, D., Acoustic parameters underlying the responses of song-specific neurons in the white-crowned sparrow (1983) J Neurosci, 3, pp. 1039-1057
  • Margoliash, D., Preference for autogenous song by auditory neurons in a song system nucleus of the white-crowned sparrow (1986) J Neurosci, 6, pp. 1643-1661
  • Margoliash, D., Fortune, E.S., Sutter, M.L., Yu, A.C., Wrenhardin, B.D., Dave, A., Distributed representation in the song system of oscines: Evolutionary implications and functional consequences (1994) Brain Behav Evol, 44, pp. 247-264
  • Margoliash, D., Konishi, M., Auditory representation of autogenous song in the song system of white-crowned sparrows (1985) Proc Natl Acad Sci USA, 82, pp. 5997-6000
  • Meliza, C.D., Chi, Z., Margoliash, D., Representations of conspecific song by starling secondary forebrain auditory neurons: Toward a hierarchical framework (2010) J Neurophysiol, 103, pp. 1195-1208
  • Mindlin, G.B., Gardner, T.J., Goller, F., Suthers, R., Experimental support for a model of birdsong production (2003) Phys Rev E, 68
  • Mindlin, G.B., Laje, R., (2005) The Physics of Birdsong, , Berlin: Springer
  • Nishikawa, K., Biewener, A.A., Aerts, P., Ahn, A.N., Chiel, H.J., Daley, M.A., Daniel, T.L., Hedrick, T.L., Neuromechanics: An integrative approach for understanding motor control (2007) Integr Comp Biol, 47, pp. 16-54
  • Perl, Y.S., Arneodo, E.M., Amador, A., Goller, F., Mindlin, G.B., Reconstruction of physiological instructions from Zebra finch song (2011) Phys Rev E Stat Nonlin Soft Matter Phys, 84
  • Prather, J.F., Peters, S., Nowicki, S., Mooney, R., Precise auditory-vocal mirroring in neurons for learned vocal communication (2008) Nature, 451, pp. 305-310
  • Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P., (2007) Numerical Recipes: The Art of Scientific Computing, , Cambridge, UK: Cambridge Univ. Press
  • Quiroga, R.Q., Nadasdy, Z., Ben-Shaul, Y., Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering (2004) Neural Comput, 16, pp. 1661-1687
  • Rauske, P.L., Shea, S.D., Margoliash, D., State and neuronal class-dependent reconfiguration in the avian song system (2003) J Neurophysiol, 89, pp. 1688-1701
  • Reinke, H., Wild, J., Identification and connections of inspiratory premotor neurons in songbirds and budgerigar (1998) J Comp Neurol, 391, pp. 147-163
  • Riede, T., Goller, F., Peripheral mechanisms for vocal production in birds- differences and similarities to human speech and singing (2010) Brain Lang, 115, pp. 69-80
  • Riede, T., Suthers, R.A., Fletcher, N.H., Blevins, W.E., Songbirds tune their vocal tract to the fundamental frequency of their song (2006) Proc Natl Acad Sci USA, 103, pp. 5543-5548
  • Schmidt, M.F., Ashmore, R.C., Vu, E.T., Bilateral control and interhemispheric coordination in the avian song motor system (2004) Ann NY Acad Sci, 1016, pp. 171-186
  • Schmidt, M.F., Konishi, M., Gating of auditory responses in the vocal control system of awake songbirds (1998) Nat Neurosci, 1, pp. 513-518
  • Sitt, J.D., Amador, A., Goller, F., Mindlin, G.B., Dynamical origin of spectrally rich vocalizations in birdsong (2008) Phys Rev E, 78
  • Sitt, J.D., Arneodo, E.M., Goller, F., Mindlin, G.B., Physiologically driven avian vocal synthesizer (2010) Phys Rev E, 81
  • Sober, S.J., Wohlgemuth, M.J., Brainard, M.S., Central contributions to acoustic variation in birdsong (2008) J Neurosci, 28, pp. 10370-10379
  • Striedter, G., Vu, E., Bilateral feedback projections to the forebrain in the premotor network for singing in zebra finches (1998) J Neurobiol, 34, pp. 27-40
  • Strogatz, S.H., (1994) Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering, , Cambridge, MA: Perseus
  • Suthers, R.A., Goller, F., Pytte, C., The neuromuscular control of birdsong (1999) Philos Trans R Soc Lond B Biol Sci, 354, pp. 927-939
  • Tchernichovski, O., Nottebohm, F., Ho, C.E., Pesaran, B., Mitra, P.P., A procedure for an automated measurement of song similarity (2000) Anim Behav, 59, pp. 1167-1176
  • Theunissen, F.E., Doupe, A.J., Temporal and spectral sensitivity of complex auditory neurons in the nucleus HVc of male zebra finches (1998) J Neurosci, 18, pp. 3786-3802

Citas:

---------- APA ----------
Boari, S., Perl, Y.S., Amador, A., Margoliash, D. & Mindlin, G.B. (2015) . Automatic reconstruction of physiological gestures used in a model of birdsong production. Journal of Neurophysiology, 114(5), 2912-2922.
http://dx.doi.org/10.1152/jn.00385.2015
---------- CHICAGO ----------
Boari, S., Perl, Y.S., Amador, A., Margoliash, D., Mindlin, G.B. "Automatic reconstruction of physiological gestures used in a model of birdsong production" . Journal of Neurophysiology 114, no. 5 (2015) : 2912-2922.
http://dx.doi.org/10.1152/jn.00385.2015
---------- MLA ----------
Boari, S., Perl, Y.S., Amador, A., Margoliash, D., Mindlin, G.B. "Automatic reconstruction of physiological gestures used in a model of birdsong production" . Journal of Neurophysiology, vol. 114, no. 5, 2015, pp. 2912-2922.
http://dx.doi.org/10.1152/jn.00385.2015
---------- VANCOUVER ----------
Boari, S., Perl, Y.S., Amador, A., Margoliash, D., Mindlin, G.B. Automatic reconstruction of physiological gestures used in a model of birdsong production. J. Neurophysiol. 2015;114(5):2912-2922.
http://dx.doi.org/10.1152/jn.00385.2015