Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The pattern of stimulation defines important characteristics of the secretory process in neurons and neuroendocrine cells, including the pool of secretory vesicles being recruited, the type and amount of transmitters released, the mode of membrane retrieval, and the mechanisms associated with vesicle replenishment. This review analyzes the mechanisms that regulate these processes in chromaffin cells, as well as in other neuroendocrine and neuronal models. A common factor in these mechanisms is the spatial and temporal distribution of the Ca2+ signal generated during cell stimulation. For instance, neurosecretory cells and neurons have pools of vesicles with different locations with respect to Ca2+ channels, and those pools are therefore differentially recruited following different patterns of stimulation. In this regard, a brief stimulus will induce the exocytosis of a small pool of vesicles that is highly coupled to voltage-dependent Ca2+ channels, whereas longer or more intense stimulation will provoke a global Ca2+ increase, promoting exocytosis irrespective of vesicle location. The pattern of stimulation, and therefore the characteristics of the Ca2+ signal generated by the stimulus also influence the mode of exocytosis and the type of endocytosis. Indeed, low-frequency stimulation favors kiss-and-run exocytosis and clathrin-independent fast endocytosis, whereas higher frequencies promote full fusion and clathrin-dependent endocytosis. This latter type of endocytosis is accelerated at high-frequency stimulation. Synaptotagmins, calcineurin, dynamin, complexin, and actin remodeling, appear to be involved in the mechanisms that determine the response of these processes to Ca2+. (Figure presented.) In chromaffin cells, a brief stimulus induces the exocytosis of a small pool of vesicles that is highly coupled to voltage-dependent Ca2+ channels (A), whereas longer or high-frequency stimulation provokes a global Ca2+ increase, promoting exocytosis irrespective of vesicle location (B). Furthermore, low-frequency stimulation favors kiss-and-run exocytosis (A), whereas higher frequencies promote full fusion (B). In this review, we analyze the mechanisms by which a given stimulation pattern defines the mode of exocytosis, and recruitment and recycling of neurosecretory vesicles. This article is part of a mini review series on Chromaffin cells (ISCCB Meeting, 2015). © 2016 International Society for Neurochemistry

Registro:

Documento: Artículo
Título:How the stimulus defines the dynamics of vesicle pool recruitment, fusion mode, and vesicle recycling in neuroendocrine cells
Autor:Cárdenas, A.M.; Marengo, F.D.
Filiación:Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
Laboratorio de Fisiología y Biología Molecular, Instituto de Fisiología, Biología Molecular y Neurociencias (CONICET), Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:calcium; endocytosis; exocytosis; immediately releasable pool; kiss-and-run; secretion; actin; calcineurin; calcium channel; calcium ion; clathrin; dynamin; synaptotagmin; voltage gated calcium channel; calcium signaling; cell fusion; chromaffin cell; endocytosis; exocytosis; human; nerve cell; nerve cell membrane steady potential; nerve cell stimulation; neurosecretion; neurosecretory cell; neurotransmitter release; nonhuman; priority journal; Review; secretory vesicle; stimulus response; synaptic transmission
Año:2016
Página de inicio:867
Página de fin:879
DOI: http://dx.doi.org/10.1111/jnc.13565
Título revista:Journal of Neurochemistry
Título revista abreviado:J. Neurochem.
ISSN:00223042
CODEN:JONRA
CAS:calcineurin, 137951-12-3; calcium ion, 14127-61-8; dynamin; synaptotagmin, 134193-26-3, 134193-27-4
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00223042_v_n_p867_Cardenas

Referencias:

  • Albillos, A., Dernick, G., Horstmann, H., Almers, W., Alvarez de Toledo, G., Lindau, M., The exocytotic event in chromaffin cells revealed by patch amperometry (1997) Nature, 389, pp. 509-512
  • Albillos, A., Neher, E., Moser, T., R-Type Ca2+ channels are coupled to the rapid component of secretion in mouse adrenal slice chromaffin cells (2000) J. Neurosci., 20, pp. 8323-8330
  • Aldea, M., Jun, K., Shin, H.S., Andres-Mateos, E., Solis-Garrido, L.M., Montiel, C., Garcia, A.G., Albillos, A., A perforated patch-clamp study of calcium currents and exocytosis in chromaffin cells of wild-type and alpha(1A) knockout mice (2002) J. Neurochem., 81, pp. 911-921
  • Ales, E., Tabares, L., Poyato, J.M., Valero, V., Lindau, M., Alvarez, D.T., High calcium concentrations shift the mode of exocytosis to the kiss-and-run mechanism (1999) Nat. Cell Biol., 1, pp. 40-44
  • Álvarez, Y.D., Marengo, F.D., The immediately releasable vesicle pool: highly coupled secretion in chromaffin and other neuroendocrine cells (2011) J. Neurochem., 116, pp. 155-163
  • Álvarez, Y.D., Ibanez, L.I., Uchitel, O.D., Marengo, F.D., P/Q Ca2+ channels are functionally coupled to exocytosis of the immediately releasable pool in mouse chromaffin cells (2008) Cell Calcium, 43, pp. 155-164
  • Álvarez, Y.D., Belingheri, A.V., Perez Bay, A.E., Javis, S.E., Tedford, H.W., Zamponi, G., Marengo, F.D., The immediately releasable pool of mouse chromaffin cell vesicles is coupled to P/Q-type calcium channels via the synaptic protein interaction site (2013) PLoS ONE, 8
  • Andres-Mateos, E., Renart, J., Cruces, J., Solis-Garrido, L.M., Serantes, R., Lucas-Cerrillo, A.M., Aldea, M., Montiel, C., Dynamic association of the Ca2+ channel alpha1A subunit and SNAP-25 in round or neurite-emitting chromaffin cells (2005) Eur. J. Neurosci., 22, pp. 2187-2198
  • Artalejo, C.R., Adams, M.E., Fox, A.P., Three types of Ca2+ channel trigger secretion with different efficacies in chromaffin cells (1994) Nature, 367, pp. 72-76
  • Artalejo, C.R., Elhamdani, A., Palfrey, H.C., Sustained stimulation shifts the mechanism of endocytosis from dynamin-1-dependent rapid endocytosis to clathrin- and dynamin-2-mediated slow endocytosis in chromaffin cells (2002) Proc. Natl Acad. Sci. USA, 99, pp. 6358-6363
  • Ashery, U., Varoqueaux, F., Voets, T., Betz, A., Thakur, P., Koch, H., Neher, E., Rettig, J., Munc13-1 acts as a priming factor for large dense-core vesicles in bovine chromaffin cells (2000) EMBO J., 19, pp. 3586-3596
  • Bacaj, T., Wu, D., Yang, X., Morishita, W., Zhou, P., Xu, W., Malenka, R.C., Sudhof, T.C., Synaptotagmin-1 and synaptotagmin-7 trigger synchronous and asynchronous phases of neurotransmitter release (2013) Neuron, 80, pp. 947-959
  • Balaji, J., Ryan, T.A., Single-vesicle imaging reveals that synaptic vesicle exocytosis and endocytosis are coupled by a single stochastic mode (2007) Proc. Natl Acad. Sci. USA, 104, pp. 20576-20581
  • Barg, S., Galvanovskis, J., Gopel, S.O., Rorsman, P., Eliasson, L., Tight coupling between electrical activity and exocytosis in mouse glucagon-secreting alpha-cells (2000) Diabetes, 49, pp. 1500-1510
  • Barg, S., Ma, X., Eliasson, L., Fast exocytosis with few Ca(2+) channels in insulin-secreting mouse pancreatic B cells (2001) Biophys. J., 81, pp. 3308-3323
  • Barg, S., Eliasson, L., Renstrom, E., Rorsman, P., A subset of 50 secretory granules in close contact with L-type Ca2+ channels accounts for first-phase insulin secretion in mouse beta-cells (2002) Diabetes, 51, pp. S74-S82
  • Berberian, K., Torres, A.J., Fang, Q., Kisler, K., Lindau, M., F-actin and myosin II accelerate catecholamine release from chromaffin granules (2009) J. Neurosci., 29, pp. 863-870
  • Bhalla, A., Tucker, W.C., Chapman, E.R., Synaptotagmin isoforms couple distinct ranges of Ca2+, Ba2+, and Sr2+ concentration to SNARE-mediated membrane fusion (2005) Mol. Biol. Cell, 16, pp. 4755-4764
  • Brandt, B.L., Hagiwara, S., Kikodoro, Y., Miyazaki, S., Action potentials in the rat chromaffin cell and effects of acetylcholine (1976) J. Physiol., 263, pp. 417-439
  • Bretou, M., Jouannot, O., Fanget, I., Cdc42 controls the dilation of the exocytotic fusion pore by regulating membrane tension (2014) Mol. Biol. Cell, 25, pp. 3195-3209
  • Cai, H., Reim, K., Varoqueaux, F., Tapechum, S., Hill, K., Sorensen, J.B., Brose, N., Chow, R.H., Complexin II plays a positive role in Ca2+-triggered exocytosis by facilitating vesicle priming (2008) Proc. Natl Acad. Sci. USA, 105, pp. 19538-19543
  • Cardenas, A.M., Marengo, F.D., Rapid endocytosis and vesicle recycling in neuroendocrine cells (2010) Cell. Mol. Neurobiol., 30, pp. 1365-1370
  • Catterall, W.A., Perez-Reyes, E., Snutch, T.P., Striessnig, J., International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels (2005) Pharmacol. Rev., 57, pp. 411-425
  • Ceccarelli, B., Hurlbut, W.P., Mauro, A., Turnover of transmitter and synaptic vesicles at the frog neuromuscular junction (1973) J. Cell Biol., 57, pp. 499-524
  • Chan, S.A., Smith, C., Physiological stimuli evoke two forms of endocytosis in bovine chromaffin cells (2001) J. Physiol., 537, pp. 871-885
  • Chan, S.A., Smith, C., Low frequency stimulation of mouse adrenal slices reveals a clathrin-independent, protein kinase C-mediated endocytic mechanism (2003) J. Physiol., 553, pp. 707-717
  • Chan, S.A., Chow, R., Smith, C., Calcium dependence of action potential-induced endocytosis in chromaffin cells (2003) Pflugers Arch., 445, pp. 540-546
  • Chan, S.A., Polo-Parada, L., Landmesser, L.T., Smith, C., Adrenal chromaffin cells exhibit impaired granule trafficking in NCAM knockout mice (2005) J. Neurophysiol., 94, pp. 1037-1047
  • Chan, S.A., Polo-Parada, L., Smith, C., Action potential stimulation reveals an increased role for P/Q-calcium channel-dependent exocytosis in mouse adrenal tissue slices (2005) Arch. Biochem. Biophys., 435, pp. 65-73
  • Chapman, E.R., How does synaptotagmin trigger neurotransmitter release? (2008) Annu. Rev. Biochem., 77, pp. 615-641
  • Cho, S., Li, G.L., von Gersdorff, H., Recovery from short-term depression and facilitation is ultrafast and Ca2+ dependent at auditory hair cell synapses (2011) J. Neurosci., 31, pp. 5682-5692
  • Chow, R.H., von Ruden, L., Neher, E., Delay in vesicle fusion revealed by electrochemical monitoring of single secretory events in adrenal chromaffin cells (1992) Nature, 356, pp. 60-63
  • Chow, R.H., Klingauf, J., Neher, E., Time course of Ca2+ concentration triggering exocytosis in neuroendocrine cells (1994) Proc. Natl Acad. Sci. USA, 91, pp. 12765-12769
  • Chowdhury, P.S., Guo, X., Wakade, T.D., Przywara, D.A., Wakade, A.R., Exocytosis from a single rat chromaffin cell by cholinergic and peptidergic neurotransmitters (1994) Neuroscience, 59, pp. 1-5
  • Deak, F., Schoch, S., Liu, X., Sudhof, T.C., Kavalali, E.T., Synaptobrevin is essential for fast synaptic-vesicle endocytosis (2004) Nat. Cell Biol., 6, pp. 1102-1108
  • Dernick, G., Gong, L.W., Tabares, L., Alvarez de Toledo, G., Lindau, M., Patch amperometry: high-resolution measurements of single-vesicle fusion and release (2005) Nat. Methods, 2, pp. 699-708
  • Dhara, M., Yarzagaray, A., Schwarz, Y., Complexin synchronizes primed vesicle exocytosis and regulates fusion pore dynamics (2014) J. Cell Biol., 204, pp. 1123-1140
  • Doreian, B.W., Fulop, T.G., Smith, C.B., Myosin II activation and actin reorganization regulate the mode of quantal exocytosis in mouse adrenal chromaffin cells (2008) J. Neurosci., 28, pp. 4470-4478
  • Elhamdani, A., Zhou, Z., Artalejo, C.R., Timing of dense-core vesicle exocytosis depends on the facilitation L-type Ca channel in adrenal chromaffin cells (1998) J. Neurosci., 18, pp. 6230-6240
  • Elhamdani, A., Palfrey, H.C., Artalejo, C.R., Quantal size is dependent on stimulation frequency and calcium entry in calf chromaffin cells (2001) Neuron, 31, pp. 819-830
  • Elhamdani, A., Azizi, F., Artalejo, C.R., Double patch clamp reveals that transient fusion (kiss-and-run) is a major mechanism of secretion in calf adrenal chromaffin cells: high calcium shifts the mechanism from kiss-and-run to complete fusion (2006) J. Neurosci., 26, pp. 3030-3036
  • Engisch, K.L., Nowycky, M.C., Calcium dependence of large dense-cored vesicle exocytosis evoked by calcium influx in bovine adrenal chromaffin cells (1996) J. Neurosci., 16, pp. 1359-1369
  • Fernandez-Alfonso, T., Ryan, T.A., The kinetics of synaptic vesicle pool depletion at CNS synaptic terminals (2004) Neuron, 41, pp. 943-953
  • Fulop, T., Smith, C., Physiological stimulation regulates the exocytic mode through calcium activation of protein kinase C in mouse chromaffin cells (2006) Biochem. J., 399, pp. 111-119
  • Fulop, T., Radabaugh, S., Smith, C., Activity-dependent differential transmitter release in mouse adrenal chromaffin cells (2005) J. Neurosci., 25, pp. 7324-7332
  • Gabel, M., Delavoie, F., Demais, V., Royer, C., Bailly, Y., Vitale, N., Bader, M.F., Chasserot-Golaz, S., Annexin A2-dependent actin bundling promotes secretory granule docking to the plasma membrane and exocytosis (2015) J. Cell Biol., 210, pp. 785-800
  • Gasman, S., Chasserot-Golaz, S., Malacombe, M., Way, M., Bader, M.F., Regulated exocytosis in neuroendocrine cells: a role for subplasmalemmal Cdc42/N-WASP-induced actin filaments (2004) Mol. Biol. Cell, 15, pp. 520-531
  • Ge, Q., Dong, Y.M., Hu, Z.T., Wu, Z.X., Xu, T., Characteristics of Ca2+-exocytosis coupling in isolated mouse pancreatic beta cells (2006) Acta Pharmacol. Sin., 27, pp. 933-938
  • von Gersdorff, H., Matthews, G., Inhibition of endocytosis by elevated internal calcium in a synaptic terminal (1994) Nature, 370, pp. 652-655
  • Giner, D., Neco, P., Frances, M.M., Lopez, I., Viniegra, S., Gutierrez, L.M., Real-time dynamics of the F-actin cytoskeleton during secretion from chromaffin cells (2005) J. Cell Sci., 118, pp. 2871-2880
  • Giraudo, C.G., Eng, W.S., Melia, T.J., Rothman, J.E., A clamping mechanism involved in SNARE-dependent exocytosis (2006) Science, 313, pp. 676-680
  • Gonzalez-Jamett, A.M., Baez-Matus, X., Hevia, M.A., Guerra, M.J., Olivares, M.J., Martinez, A.D., Neely, A., Cardenas, A.M., The association of dynamin with synaptophysin regulates quantal size and duration of exocytotic events in chromaffin cells (2010) J. Neurosci., 30, pp. 10683-10691
  • Gonzalez-Jamett, A.M., Momboisse, F., Guerra, M.J., Dynamin-2 regulates fusion pore expansion and quantal release through a mechanism that involves actin dynamics in neuroendocrine chromaffin cells (2013) PLoS ONE, 8
  • Gonzalez-Jamett, A.M., Haro-Acuna, V., Momboisse, F., Caviedes, P., Bevilacqua, J.A., Cardenas, A.M., Dynamin-2 in nervous system disorders (2014) J. Neurochem., 128, pp. 210-223
  • Graham, M.E., O'Callaghan, D.W., McMahon, H.T., Burgoyne, R.D., Dynamin-dependent and dynamin-independent processes contribute to the regulation of single vesicle release kinetics and quantal size (2002) Proc. Natl Acad. Sci. USA, 99, pp. 7124-7129
  • Graham, M.E., Prescott, G.R., Johnson, J.R., Jones, M., Walmesley, A., Haynes, L.P., Morgan, A., Barclay, J.W., Structure-function study of mammalian Munc18-1 and C. elegans UNC-18 implicates domain 3b in the regulation of exocytosis (2011) PLoS ONE, 6, pp. 1-12
  • Granseth, B., Odermatt, B., Royle, S.J., Lagnado, L., Comment on “The dynamic control of kiss-and-run and vesicular reuse probed with single nanoparticles (2009) Science, 325, p. 1499. , and, author reply 1499
  • Han, Y., Kaeser, P.S., Sudhof, T.C., Schneggenburger, R., RIM determines Ca2+ channel density and vesicle docking at the presynaptic active zone (2011) Neuron, 69, pp. 304-316
  • Harkins, A.B., Cahill, A.L., Powers, J.F., Tischler, A.S., Fox, A.P., Deletion of the synaptic protein interaction site of the N-type (CaV2.2) calcium channel inhibits secretion in mouse pheochromocytoma cells (2004) Proc. Natl Acad. Sci. USA, 101, pp. 15219-15224
  • Hernandez-Guijo, J.M., de Pascual, R., Garcia, A.G., Gandia, L., Separation of calcium channel current components in mouse chromaffin cells superfused with low- and high-barium solutions (1998) Pflugers Arch., 436, pp. 75-82
  • Heuser, J.E., Reese, T.S., Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction (1973) J. Cell Biol., 57, pp. 315-344
  • Holman, M.E., Coleman, H.A., Tonta, M.A., Parkington, H.C., Synaptic transmission from splanchnic nerves to the adrenal medulla of guinea-pigs (1994) J. Physiol., 478, pp. 115-124
  • Holroyd, P., Lang, T., Wenzel, D., De Camilli, P., Jahn, R., Imaging direct, dynamin-dependent recapture of fusing secretory granules on plasma membrane lawns from PC12 cells (2002) Proc. Natl Acad. Sci. USA, 99, pp. 16806-16811
  • Horrigan, F.T., Bookman, R.J., Releasable pools and the kinetics of exocytosis in adrenal chromaffin cells (1994) Neuron, 13, pp. 1119-1129
  • Huntwork, S., Littleton, J.T., A complexin fusion clamp regulates spontaneous neurotransmitter release and synaptic growth (2007) Nat. Neurosci., 10, pp. 1235-1237
  • Jackson, J., Papadopulos, A., Meunier, F.A., McCluskey, A., Robinson, P.J., Keating, D.J., Small molecules demonstrate the role of dynamin as a bi-directional regulator of the exocytosis fusion pore and vesicle release (2015) Mol. Psychiatry, 20, pp. 810-819
  • Kaeser, P.S., Deng, L., Wang, Y., Dulubova, I., Liu, X., Rizo, J., Sudhof, T.C., RIM proteins tether Ca2+-channels to presynaptic active zones via a direct PDZ-domain interaction (2011) Cell, 144, pp. 282-295
  • Kaeser, P.S., Deng, L., Fan, M., Sudhof, T.C., RIM genes differentially contribute to organizing presynaptic release sites (2012) Proc. Natl Acad. Sci. USA, 109, pp. 11830-11835
  • Klingauf, J., Neher, E., Modeling buffered Ca2+ diffusion near the membrane: implications for secretion in neuroendocrine cells (1997) Biophys. J., 72, pp. 674-690
  • Klingauf, J., Kavalali, E.T., Tsien, R.W., Kinetics and regulation of fast endocytosis at hippocampal synapses (1998) Nature, 394, pp. 581-585
  • Lara, B., Gandia, L., Martinez-Sierra, R., Torres, A., Garcia, A.G., Q-type Ca2+ channels are located closer to secretory sites than L-type channels: functional evidence in chromaffin cells (1998) Pflugers Arch., 435, pp. 472-478
  • Lejen, T., Skolnik, K., Rose, S.D., Marcu, M.G., Elzagallaai, A., Trifaro, J.M., An antisense oligodeoxynucleotide targeted to chromaffin cell scinderin gene decreased scinderin levels and inhibited depolarization-induced cortical F-actin disassembly and exocytosis (2001) J. Neurochem., 76, pp. 768-777
  • Lin, M.Y., Rohan, J.G., Cai, H., Reim, K., Ko, C.P., Chow, R.H., Complexin facilitates exocytosis and synchronizes vesicle release in two secretory model systems (2013) J. Physiol., 591, pp. 2463-2473
  • Lindau, M., Alvarez de Toledo, G., The fusion pore (2003) Biochim. Biophys. Acta, 1641, pp. 167-173
  • Lomax, R.B., Michelena, P., Nunez, L., Garcia-Sancho, J., Garcia, A.G., Montiel, C., Different contributions of L- and Q-type Ca2+hannels to Ca2+ signals and secretion in chromaffin cell subtypes (1997) Am. J. Physiol., 272, pp. C476-C484
  • Lopez, I., Giner, D., Ruiz-Nuno, A., Fuentealba, J., Viniegra, S., Garcia, A.G., Davletov, B., Gutierrez, L.M., Tight coupling of the t-SNARE and calcium channel microdomains in adrenomedullary slices and not in cultured chromaffin cells (2007) Cell Calcium, 41, pp. 547-558
  • Marengo, F.D., Calcium gradients and exocytosis in bovine adrenal chromaffin cells (2005) Cell Calcium, 38, pp. 87-99
  • Marengo, F.D., Monck, J.R., Spatial distribution of Ca(2+) signals during repetitive depolarizing stimuli in adrenal chromaffin cells (2003) Biophys. J., 85, pp. 3397-3417
  • Maximov, A., Bezprozvanny, I., Synaptic targeting of N-type calcium channels in hippocampal neurons (2002) J. Neurosci., 22, pp. 6939-6952
  • Maximov, A., Sudhof, T.C., Bezprozvanny, I., Association of neuronal calcium channels with modular adaptor proteins (1999) J. Biol. Chem., 274, pp. 24453-24456
  • McMahon, H.T., Boucrot, E., Molecular mechanism and physiological functions of clathrin-mediated endocytosis (2011) Nat. Rev. Mol. Cell Biol., 12, pp. 517-533
  • Merrins, M.J., Stuenkel, E.L., Kinetics of Rab27a-dependent actions on vesicle docking and priming in pancreatic beta-cells (2008) J. Physiol., 586, pp. 5367-5381
  • Mochida, S., Sheng, Z.H., Baker, C., Kobayashi, H., Catterall, W.A., Inhibition of neurotransmission by peptides containing the synaptic protein interaction site of N-type Ca2+ channels (1996) Neuron, 17, pp. 781-788
  • Mochida, S., Westenbroek, R.E., Yokoyama, C.T., Zhong, H., Myers, S.J., Scheuer, T., Itoh, K., Catterall, W.A., Requirement for the synaptic protein interaction site for reconstitution of synaptic transmission by P/Q-type calcium channels (2003) Proc. Natl Acad. Sci. USA, 100, pp. 2819-2824
  • Moghadam, P.K., Jackson, M.B., The functional significance of synaptotagmin diversity in neuroendocrine secretion (2013) Front. Endocrinol. (Lausanne), 4, p. 124
  • Moser, T., Neher, E., Rapid exocytosis in single chromaffin cells recorded from mouse adrenal slices (1997) J. Neurosci., 17, pp. 2314-2323
  • Neco, P., Fernandez-Peruchena, C., Navas, S., Gutierrez, L.M., de Toledo, G.A., Ales, E., Myosin II contributes to fusion pore expansion during exocytosis (2008) J. Biol. Chem., 283, pp. 10949-10957
  • Neher, E., Vesicle pools and Ca2+microdomains: new tools for understanding their roles in neurotransmitter release (1998) Neuron, 20, pp. 389-399
  • Novara, M., Baldelli, P., Cavallari, D., Carabelli, V., Giancippoli, A., Carbone, E., Exposure to cAMP and beta-adrenergic stimulation recruits Ca(V)3 T-type channels in rat chromaffin cells through Epac cAMP-receptor proteins (2004) J. Physiol., 558, pp. 433-449
  • Olivares, M.J., Gonzalez-Jamett, A.M., Guerra, M.J., Baez-Matus, X., Haro-Acuna, V., Martinez-Quiles, N., Cardenas, A.M., Src kinases regulate de novo actin polymerization during exocytosis in neuroendocrine chromaffin cells (2014) PLoS ONE, 9
  • Oré, L.O., Artalejo, A.R., Intracellular Ca2+microdomain-triggered exocytosis in neuroendocrine cells (2005) Trends Neurosci., 27, pp. 113-115
  • Perrais, D., Kleppe, I.C., Taraska, J.W., Almers, W., Recapture after exocytosis causes differential retention of protein in granules of bovine chromaffin cells (2004) J. Physiol., 560, pp. 413-428
  • Polo-Parada, L., Chan, S.A., Smith, C., An activity-dependent increased role for L-type calcium channels in exocytosis is regulated by adrenergic signaling in chromaffin cells (2006) Neuroscience, 143, pp. 445-459
  • Rettig, J., Sheng, Z.H., Kim, D.K., Hodson, C.D., Snutch, T.P., Catterall, W.A., Isoform-specific interaction of the alpha1A subunits of brain Ca2+channels with the presynaptic proteins syntaxin and SNAP-25 (1996) Proc. Natl Acad. Sci. USA, 93, pp. 7363-7368
  • Rettig, J., Heinemann, C., Ashery, U., Sheng, Z.H., Yokoyama, C.T., Catterall, W.A., Neher, E., Alteration of Ca2+dependence of neurotransmitter release by disruption of Ca2+channel/syntaxin interaction (1997) J. Neurosci., 17, pp. 6647-6656
  • Richards, D.A., Guatimosim, C., Betz, W.J., Two endocytic recycling routes selectively fill two vesicle pools in frog motor nerve terminals (2000) Neuron, 27, pp. 551-559
  • Rizo, J., Xu, J., The synaptic vesicle release machinery (2015) Annu. Rev. Biophys., 44, pp. 339-367
  • Rizzoli, S.O., Betz, W.J., Synaptic vesicle pools (2005) Nat. Rev. Neurosci., 6, pp. 57-69
  • Samasilp, P., Chan, S.A., Smith, C., Activity-dependent fusion pore expansion regulated by a calcineurin-dependent dynamin-syndapin pathway in mouse adrenal chromaffin cells (2012) J. Neurosci., 32, pp. 10438-10447
  • Santana, F., Michelena, P., Jaen, R., Garcia, A.G., Borges, R., Calcium channel subtypes and exocytosis in chromaffin cells: a different view from the intact rat adrenal (1999) Naunyn Schmiedebergs Arch. Pharmacol., 360, pp. 33-37
  • Scepek, S., Coorssen, J.R., Lindau, M., Fusion pore expansion in horse eosinophils is modulated by Ca2+and protein kinase C via distinct mechanisms (1998) EMBO J., 17, pp. 4340-4345
  • Schaub, J.R., Lu, X., Doneske, B., Shin, Y.K., McNew, J.A., Hemifusion arrest by complexin is relieved by Ca2+-synaptotagmin I (2006) Nat. Struct. Mol. Biol., 13, pp. 748-750
  • Schonn, J.S., Maximov, A., Lao, Y., Sudhof, T.C., Sorensen, J.B., Synaptotagmin-1 and -7 are functionally overlapping Ca2+ sensors for exocytosis in adrenal chromaffin cells (2008) Proc. Natl Acad. Sci. USA, 105, pp. 3998-4003
  • Segovia, M., Ales, E., Montes, M.A., Bonifas, I., Jemal, I., Lindau, M., Maximov, A., Alvarez de Toledo, G., Push-and-pull regulation of the fusion pore by synaptotagmin-7 (2010) Proc. Natl Acad. Sci. USA, 107, pp. 19032-19037
  • Segura, J., Gil, A., Soria, B., Modeling study of exocytosis in neuroendocrine cells: influence of the geometrical parameters (2000) Biophys. J., 79, pp. 1771-1786
  • Seward, E.P., Nowycky, M.C., Kinetics of stimulus-coupled secretion in dialyzed bovine chromaffin cells in response to trains of depolarizing pulses (1996) J. Neurosci., 16, pp. 553-562
  • Smith, C., Moser, T., Xu, T., Neher, E., Cytosolic Ca2+ acts by two separate pathways to modulate the supply of release-competent vesicles in chromaffin cells (1998) Neuron, 20, pp. 1243-1253
  • Sorensen, J.B., Formation, stabilisation and fusion of the readily releasable pool of secretory vesicles (2004) Pflugers Arch., 448, pp. 347-362
  • Sun, J.Y., Wu, X.S., Wu, L.G., Single and multiple vesicle fusion induce different rates of endocytosis at a central synapse (2002) Nature, 417, pp. 555-559
  • Sun, L., Bittner, M.A., Holz, R.W., Rim and exocytosis: Rab3a-binding and secretion-enhancing domains are separate and function independently (2002) Ann. N. Y. Acad. Sci., 971, pp. 244-247
  • Sun, L., Bittner, M.A., Holz, R.W., Rim, a component of the presynaptic active zone and modulator of exocytosis, binds 14-3-3 through its N terminus (2003) J. Biol. Chem., 278, pp. 38301-38309
  • Taraska, J.W., Perrais, D., Ohara-Imaizumi, M., Nagamatsu, S., Almers, W., Secretory granules are recaptured largely intact after stimulated exocytosis in cultured endocrine cells (2003) Proc. Natl Acad. Sci. USA, 100, pp. 2070-2075
  • Trifaro, J.M., Rose, S.D., Marcu, M.G., Scinderin, a Ca2+-dependent actin filament severing protein that controls cortical actin network dynamics during secretion (2000) Neurochem. Res., 25, pp. 133-144
  • Tsuboi, T., McMahon, H.T., Rutter, G.A., Mechanisms of dense core vesicle recapture following “kiss and run” (“cavicapture”) exocytosis in insulin-secreting cells (2004) J. Biol. Chem., 279, pp. 47115-47124
  • Voets, T., Neher, E., Moser, T., Mechanisms underlying phasic and sustained secretion in chromaffin cells from mouse adrenal slices (1999) Neuron, 23, pp. 607-615
  • Voets, T., Moser, T., Lund, P.E., Chow, R.H., Geppert, M., Sudhof, T.C., Neher, E., Intracellular calcium dependence of large dense-core vesicle exocytosis in the absence of synaptotagmin I (2001) Proc. Natl Acad. Sci. USA, 98, pp. 11680-11685
  • Wadel, K., Neher, E., Sakaba, T., The coupling between synaptic vesicles and Ca2+ channels determines fast neurotransmitter release (2007) Neuron, 53, pp. 563-575
  • Wang, C.T., Bai, J., Chang, P.Y., Chapman, E.R., Jackson, M.B., Synaptotagmin-Ca2+ triggers two sequential steps in regulated exocytosis in rat PC12 cells: fusion pore opening and fusion pore dilation (2006) J. Physiol., 570, pp. 295-307
  • Wang, Y., Lin, H., Hao, N., Zhu, Z., Wang, D., Li, Y., Chen, H., Han, X., Forkhead box O1 mediates defects in palmitate-induced insulin granule exocytosis by downregulation of calcium/calmodulin-dependent serine protein kinase expression in INS-1 cells (2015) Diabetologia, 58, pp. 1272-1281
  • Weiss, N., Zamponi, G.W., Regulation of voltage-gated calcium channels by synaptic proteins (2012) Adv. Exp. Med. Biol., 740, pp. 759-775
  • Wu, X.S., Wu, L.G., Rapid endocytosis does not recycle vesicles within the readily releasable pool (2009) J. Neurosci., 29, pp. 11038-11042
  • Wu, X.S., Wu, L.G., The yin and yang of calcium effects on synaptic vesicle endocytosis (2014) J. Neurosci., 34, pp. 2652-2659
  • Wu, L.G., Hamid, E., Shin, W., Chiang, H.C., Exocytosis and endocytosis: modes, functions, and coupling mechanisms (2014) Annu. Rev. Physiol., 76, pp. 301-331
  • Wykes, R.C., Bauer, C.S., Khan, S.U., Weiss, J.L., Seward, E.P., Differential regulation of endogenous N- and P/Q-type Ca2+ channel inactivation by Ca2+/calmodulin impacts on their ability to support exocytosis in chromaffin cells (2007) J. Neurosci., 27, pp. 5236-5248
  • Xu, J., Mashimo, T., Sudhof, T.C., Synaptotagmin-1, -2, and -9: Ca(2+) sensors for fast release that specify distinct presynaptic properties in subsets of neurons (2007) Neuron, 54, pp. 567-581
  • Xue, M., Stradomska, A., Chen, H., Brose, N., Zhang, W., Rosenmund, C., Reim, K., Complexins facilitate neurotransmitter release at excitatory and inhibitory synapses in mammalian central nervous system (2008) Proc. Natl Acad. Sci. USA, 105, pp. 7875-7880
  • Yamaga, M., Kielar-Grevstad, D.M., Martin, T.F., Phospholipase Cη2 activation re-directs vesicle trafficking by regulating F-actin (2015) J. Biol. Chem., 290, pp. 29010-29021
  • Yokoyama, C.T., Myers, S.J., Fu, J., Mockus, S.M., Scheuer, T., Catterall, W.A., Mechanism of SNARE protein binding and regulation of Cav2 channels by phosphorylation of the synaptic protein interaction site (2005) Mol. Cell Neurosci., 28, pp. 1-17
  • Young, S.M., Jr., Neher, E., Synaptotagmin has an essential function in synaptic vesicle positioning for synchronous release in addition to its role as a calcium sensor (2009) Neuron, 63, pp. 482-496
  • Zamponi, G.W., Regulation of presynaptic calcium channels by synaptic proteins (2003) J. Pharmacol. Sci., 92, pp. 79-83
  • Zhang, Z., Wu, Y., Wang, Z., Dunning, F.M., Rehfuss, J., Ramanan, D., Chapman, E.R., Jackson, M.B., Release mode of large and small dense-core vesicles specified by different synaptotagmin isoforms in PC12 cells (2011) Mol. Biol. Cell, 22, pp. 2324-2336

Citas:

---------- APA ----------
Cárdenas, A.M. & Marengo, F.D. (2016) . How the stimulus defines the dynamics of vesicle pool recruitment, fusion mode, and vesicle recycling in neuroendocrine cells. Journal of Neurochemistry, 867-879.
http://dx.doi.org/10.1111/jnc.13565
---------- CHICAGO ----------
Cárdenas, A.M., Marengo, F.D. "How the stimulus defines the dynamics of vesicle pool recruitment, fusion mode, and vesicle recycling in neuroendocrine cells" . Journal of Neurochemistry (2016) : 867-879.
http://dx.doi.org/10.1111/jnc.13565
---------- MLA ----------
Cárdenas, A.M., Marengo, F.D. "How the stimulus defines the dynamics of vesicle pool recruitment, fusion mode, and vesicle recycling in neuroendocrine cells" . Journal of Neurochemistry, 2016, pp. 867-879.
http://dx.doi.org/10.1111/jnc.13565
---------- VANCOUVER ----------
Cárdenas, A.M., Marengo, F.D. How the stimulus defines the dynamics of vesicle pool recruitment, fusion mode, and vesicle recycling in neuroendocrine cells. J. Neurochem. 2016:867-879.
http://dx.doi.org/10.1111/jnc.13565