Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Enormous advances have been made in the recent years in regard to the mechanisms and neural circuits by which odors are sensed and perceived. Part of this understanding has been gained from parallel studies in insects and rodents that show striking similarity in the mechanisms they use to sense, encode, and perceive odors. In this review, we provide a short introduction to the functioning of olfactory systems from transduction of odorant stimuli into electrical signals in sensory neurons to the anatomical and functional organization of the networks involved in neural representation of odors in the central nervous system. We make emphasis on the functional and anatomical architecture of the first synaptic relay of the olfactory circuit, the olfactory bulb in vertebrates and the antennal lobe in insects. We discuss how the exquisite and conserved architecture of this structure is established and how different odors are encoded in mosaic activity patterns. Finally, we discuss the validity of methods used to compare activation patterns in relation to perceptual similarity. © 2014 International Society for Neurochemistry.

Registro:

Documento: Artículo
Título:Mosaic activity patterns and their relation to perceptual similarity: Open discussions on the molecular basis and circuitry of odor recognition
Autor:Locatelli, F.F.; Rela, L.
Filiación:Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIByNE-CONICET, Argentina
Grupo de Neurociencias de Sistemas, IFIBIO Houssay, CONICET, Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:antennal lobe; olfactory bulb; olfactory ensheating cells; olfactory percept; sensory map; transduction; antenna (organ); Caenorhabditis elegans; central nervous system; connectome; insect; mosaicism; nonhuman; odor recognition test; olfactory bulb; olfactory receptor; olfactory system; parallel design; pattern recognition; perception; priority journal; Review; rodent; sensory nerve cell; somatosensory system; synaptic transmission; vertebrate; animal; cytology; human; nerve cell network; odor; odor; physiology; signal transduction; smelling; Hexapoda; Rodentia; Vertebrata; Animals; Humans; Nerve Net; Odors; Olfactory Pathways; Olfactory Perception; Olfactory Receptor Neurons; Signal Transduction; Smell
Año:2014
Volumen:131
Número:5
Página de inicio:546
Página de fin:553
DOI: http://dx.doi.org/10.1111/jnc.12931
Título revista:Journal of Neurochemistry
Título revista abreviado:J. Neurochem.
ISSN:00223042
CODEN:JONRA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00223042_v131_n5_p546_Locatelli

Referencias:

  • Aoki, M., Takeuchi, H., Nakashima, A., Nishizumi, H., Sakano, H., Possible roles of Robo1+ ensheathing cells in guiding dorsal-zone olfactory sensory neurons in mouse (2013) Dev. Neurobiol., 73, pp. 828-840
  • Auffarth, B., Understanding smell-the olfactory stimulus problem (2013) Neurosci. Biobehav. Rev., 37, pp. 1667-1679
  • Barth, J., Dipt, S., Pech, U., Hermann, M., Riemensperger, T., Fiala, A., Differential associative training enhances olfactory acuity in Drosophila melanogaster (2014) J. Neurosci., 34, pp. 1819-1837
  • Bhagavan, S., Smith, B.H., Olfactory conditioning in the honey bee, Apis mellifera: Effects of odor intensity (1997) Physiol. Behav., 61, pp. 107-117
  • Cadiou, H., Aoudé, I., Tazir, B., Molinas, A., Fenech, C., Meunier, N., Grosmaitre, X., Postnatal odorant exposure induces peripheral olfactory plasticity at the cellular level (2014) J. Neurosci., 34, pp. 4857-4870
  • Cho, J.H., Lépine, M., Andrews, W., Parnavelas, J., Cloutier, J.F., Requirement for Slit-1 and Robo-2 in zonal segregation of olfactory sensory neuron axons in the main olfactory bulb (2007) J. Neurosci., 27, pp. 9094-9104
  • Chou, Y.H., Zheng, X., Beachy, P.A., Luo, L., Patterning axon targeting of olfactory receptor neurons by coupled hedgehog signaling at two distinct steps (2010) Cell, 142, pp. 954-966
  • Cloutier, J.F., Giger, R.J., Koentges, G., Dulac, C., Kolodkin, A.L., Ginty, D.D., Neuropilin-2 mediates axonal fasciculation, zonal segregation, but not axonal convergence, of primary accessory olfactory neurons (2002) Neuron, 33, pp. 877-892
  • Cloutier, J., Sahay, A., Chang, E., Tessier-Lavigne, M., Dulac, C., Kolodkin, A., Ginty, D., Differential requirements for semaphorin 3F and Slit-1 in axonal targeting, fasciculation, and segregation of olfactory sensory neuron projections (2004) J. Neurosci., 24, pp. 9087-9096
  • Coppola, D.M., Waggener, C.T., The effects of unilateral naris occlusion on gene expression profiles in mouse olfactory mucosa (2012) J. Mol. Neurosci., 47, pp. 604-618
  • Fernandez, P.C., Locatelli, F.F., Person-Rennell, N., Deleo, G., Smith, B.H., Associative conditioning tunes transient dynamics of early olfactory processing (2009) J. Neurosci., 29, pp. 10191-10202
  • Fluegge, D., Moeller, L.M., Cichy, A., Mitochondrial Ca(2+) mobilization is a key element in olfactory signaling (2012) Nat. Neurosci., 15, pp. 754-762
  • Froese, A., Szyszka, P., Menzel, R., Effect of GABAergic inhibition on odorant concentration coding in mushroom body intrinsic neurons of the honeybee (2014) J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol., 200, pp. 183-195
  • Gaillard, I., Rouquier, S., Giorgi, D., Olfactory receptors (2004) Cell. Mol. Life Sci., 61, pp. 456-469
  • Gottfried, J.A., Central mechanisms of odour object perception (2010) Nat. Rev. Neurosci., 11, pp. 628-641
  • Guerrieri, F., Schubert, M., Sandoz, J.C., Giurfa, M., Perceptual and neural olfactory similarity in honeybees (2005) PLoS Biol., 3, p. e60
  • Hallem, E.A., Carlson, J.R., Coding of odors by a receptor repertoire (2006) Cell, 125, pp. 143-160
  • Hasegawa, S., Hamada, S., Kumode, Y., Esumi, S., Katori, S., Fukuda, E., Uchiyama, Y., Yagi, T., The protocadherin-alpha family is involved in axonal coalescence of olfactory sensory neurons into glomeruli of the olfactory bulb in mouse (2008) Mol. Cell. Neurosci., 38, pp. 66-79
  • He, Z., Tessier-Lavigne, M., Neuropilin is a receptor for the axonal chemorepellent Semaphorin III (1997) Cell, 90, pp. 739-751
  • Hengl, T., Kaneko, H., Dauner, K., Vocke, K., Frings, S., Möhrlen, F., Molecular components of signal amplification in olfactory sensory cilia (2010) Proc. Natl Acad. Sci. USA, 107, pp. 6052-6057
  • Imai, T., Suzuki, M., Sakano, H., Odorant receptor-derived cAMP signals direct axonal targeting (2006) Science, 314, pp. 657-661
  • Imai, T., Yamazaki, T., Kobayakawa, R., Kobayakawa, K., Abe, T., Suzuki, M., Sakano, H., Pre-target axon sorting establishes the neural map topography (2009) Science, 325, pp. 585-590
  • Jortner, R.A., Network architecture underlying maximal separation of neuronal representations (2012) Front. Neuroeng., 5, p. 19
  • Kreher, S.A., Mathew, D., Kim, J., Carlson, J.R., Translation of sensory input into behavioral output via an olfactory system (2008) Neuron, 59, pp. 110-124
  • Kuebler, L.S., Schubert, M., Kárpáti, Z., Hansson, B.S., Olsson, S.B., Antennal lobe processing correlates to moth olfactory behavior (2012) J. Neurosci., 32, pp. 5772-5782
  • Lei, H., Christensen, T.A., Hildebrand, J.G., Spatial and temporal organization of ensemble representations for different odor classes in the moth antennal lobe (2004) J. Neurosci., 24, pp. 11108-11119
  • Leinders-Zufall, T., Cockerham, R.E., Michalakis, S., Biel, M., Garbers, D.L., Reed, R.R., Zufall, F., Munger, S.D., Contribution of the receptor guanylyl cyclase GC-D to chemosensory function in the olfactory epithelium (2007) Proc. Natl Acad. Sci. USA, 104, pp. 14507-14512
  • Lin, W., Margolskee, R., Donnert, G., Hell, S.W., Restrepo, D., Olfactory neurons expressing transient receptor potential channel M5 (TRPM5) are involved in sensing semiochemicals (2007) Proc. Natl Acad. Sci. USA, 104, pp. 2471-2476
  • Locatelli, F.F., Fernandez, P.C., Villareal, F., Muezzinoglu, K., Huerta, R., Galizia, C.G., Smith, B.H., Nonassociative plasticity alters competitive interactions among mixture components in early olfactory processing (2013) Eur. J. Neurosci., 37, pp. 63-79
  • Malnic, B., Gonzalez-Kristeller, D., Gutiyama, L., Odorant receptors (2010) The Neurobiology of Olfaction, , http://www.ncbi.nlm.nih.gov/books/NBK55985/, Chapter 7 (Menini A. ed.). CRC Press, Boca Raton, FL. [accessed on 24 August 2014]
  • Maritan, M., Monaco, G., Zamparo, I., Zaccolo, M., Pozzan, T., Lodovichi, C., Odorant receptors at the growth cone are coupled to localized cAMP and Ca2+ increases (2009) Proc. Natl Acad. Sci. USA, 106, pp. 3537-3542
  • Molofsky, A.V., Kelley, K.W., Tsai, H.H., Redmond, S.A., Chang, S.M., Madireddy, L., Chan, J.R., Rowitch, D.H., Astrocyte-encoded positional cues maintain sensorimotor circuit integrity (2014) Nature, 509, pp. 189-194
  • Nakashima, A., Takeuchi, H., Imai, T., Agonist-independent GPCR activity regulates anterior-posterior targeting of olfactory sensory neurons (2013) Cell, 154, pp. 1314-1325
  • Nguyen-Ba-Charvet, K.T., Di Meglio, T., Fouquet, C., Chédotal, A., Robos and slits control the pathfinding and targeting of mouse olfactory sensory axons (2008) J. Neurosci., 28, pp. 4244-4249
  • Niewalda, T., Völler, T., Eschbach, C., Ehmer, J., Chou, W.C., Timme, M., Fiala, A., Gerber, B., A combined perceptual, physico-chemical, and imaging approach to 'odour-distances' suggests a categorizing function of the Drosophila antennal lobe (2011) PLoS ONE, 6, p. e24300
  • Olshausen, B.A., Field, D.J., Sparse coding of sensory inputs (2004) Curr. Opin. Neurobiol., 14, pp. 481-487
  • Parnas, M., Lin, A.C., Huetteroth, W., Miesenböck, G., Odor discrimination in Drosophila: From neural population codes to behavior (2013) Neuron, 79, pp. 932-944
  • Peele, P., Ditzen, M., Menzel, R., Galizia, C.G., Appetitive odor learning does not change olfactory coding in a subpopulation of honeybee antennal lobe neurons (2006) J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol., 192, pp. 1083-1103
  • Pelz, C., Gerber, B., Menzel, R., Odorant intensity as a determinant for olfactory conditioning in honeybees: Roles in discrimination, overshadowing and memory consolidation (1997) J. Exp. Biol., 200, pp. 837-847
  • Pifferi, S., Menini, A., Kurahashi, T., Signal transduction in vertebrate olfactory cilia (2010) The Neurobiology of Olfaction, , http://www.ncbi.nlm.nih.gov/books/NBK55986/, Chapter 8 (Menini A. ed.). CRC Press, Boca Raton, FL. [accessed on 24 August 2014]
  • Rath, L., Galizia, C.G., Szyszka, P., Multiple memory traces after associative learning in the honey bee antennal lobe (2011) Eur. J. Neurosci., 34, pp. 352-360
  • Rela, L., Bordey, A., Greer, C.A., Olfactory ensheathing cell membrane properties are shaped by connectivity (2010) Glia, 58, pp. 665-678
  • Ressler, K.J., Sullivan, S.L., Buck, L.B., Information coding in the olfactory system: Evidence for a stereotyped and highly organized epitope map in the olfactory bulb (1994) Cell, 79, pp. 1245-1255
  • Rieger, A., Deitmer, J., Lohr, C., Axon-glia communication evokes calcium signaling in olfactory ensheathing cells of the developing olfactory bulb (2007) Glia, 55, pp. 352-359
  • Rinberg, D., Koulakov, A., Gelperin, A., Speed-accuracy tradeoff in olfaction (2006) Neuron, 51, pp. 351-358
  • Rössler, W., Oland, L.A., Higgins, M.R., Hildebrand, J.G., Tolbert, L.P., Development of a glia-rich axon-sorting zone in the olfactory pathway of the moth Manduca sexta (1999) J. Neurosci., 19, pp. 9865-9877
  • Sachse, S., Galizia, C.G., The coding of odour-intensity in the honeybee antennal lobe: Local computation optimizes odour representation (2003) Eur. J. Neurosci., 18, pp. 2119-2132
  • Sachse, S., Rueckert, E., Keller, A., Okada, R., Tanaka, N.K., Ito, K., Vosshall, L.B., Activity-dependent plasticity in an olfactory circuit (2007) Neuron, 56, pp. 838-850
  • Sandoz, J.C., Galizia, C.G., Menzel, R., Side-specific olfactory conditioning leads to more specific odor representation between sides but not within sides in the honeybee antennal lobes (2003) Neuroscience, 120, pp. 1137-1148
  • Schneider, T., Reiter, C., Eule, E., Bader, B., Lichte, B., Nie, Z., Schimansky, T., Fischbach, K.F., Restricted expression of the irreC-rst protein is required for normal axonal projections of columnar visual neurons (1995) Neuron, 15, pp. 259-271
  • Semmelhack, J.L., Wang, J.W., Select Drosophila glomeruli mediate innate olfactory attraction and aversion (2009) Nature, 459, pp. 218-223
  • Serizawa, S., Miyamichi, K., Takeuchi, H., Yamagishi, Y., Suzuki, M., Sakano, H., A neuronal identity code for the odorant receptor-specific and activity-dependent axon sorting (2006) Cell, 127, pp. 1057-1069
  • Shen, K., Bargmann, C.I., The immunoglobulin superfamily protein SYG-1 determines the location of specific synapses in C. Elegans (2003) Cell, 112, pp. 619-630
  • Silbering, A.F., Benton, R., Ionotropic and metabotropic mechanisms in chemoreception: 'Chance or design'? (2010) EMBO Rep., 11, pp. 173-179
  • Smear, M., Resulaj, A., Zhang, J., Bozza, T., Rinberg, D., Multiple perceptible signals from a single olfactory glomerulus (2013) Nat. Neurosci., 16, pp. 1687-1691
  • Stensmyr, M.C., Dweck, H.K., Farhan, A., A conserved dedicated olfactory circuit for detecting harmful microbes in Drosophila (2012) Cell, 151, pp. 1345-1357
  • Stierle, J.S., Galizia, C.G., Szyszka, P., Millisecond stimulus onset-asynchrony enhances information about components in an odor mixture (2013) J. Neurosci., 33, pp. 6060-6069
  • Stopfer, M., Bhagavan, S., Smith, B.H., Laurent, G., Impaired odour discrimination on desynchronization of odour-encoding neural assemblies (1997) Nature, 390, pp. 70-74
  • Strausfeld, N.J., Hildebrand, J.G., Olfactory systems: Common design, uncommon origins? (1999) Curr. Opin. Neurobiol., 9, pp. 634-639
  • Strotmann, J., Conzelmann, S., Beck, A., Feinstein, P., Breer, H., Mombaerts, P., Local permutations in the glomerular array of the mouse olfactory bulb (2000) J. Neurosci., 20, pp. 6927-6938
  • Su, C.Y., Menuz, K., Carlson, J.R., Olfactory perception: Receptors, cells, and circuits (2009) Cell, 139, pp. 45-59
  • Szyszka, P., Stierle, J.S., Biergans, S., Galizia, C.G., The speed of smell: Odor-object segregation within milliseconds (2012) PLoS ONE, 7, p. e36096
  • Takeuchi, H., Sakano, H., Neural map formation in the mouse olfactory system (2014) Cell. Mol. Life Sci., 71, pp. 3049-3057
  • Theunissen, F.E., From synchrony to sparseness (2003) Trends Neurosci., 26, pp. 61-64
  • Thyssen, A., Stavermann, M., Buddrus, K., Doengi, M., Ekberg, J.A., St John, J.A., Deitmer, J.W., Lohr, C., Spatial and developmental heterogeneity of calcium signaling in olfactory ensheathing cells (2013) Glia, 61, pp. 327-337
  • Vassar, R., Chao, S.K., Sitcheran, R., Nunez, J.M., Vosshall, L.B., Axel, R., Topographic organization of sensory projections to the olfactory bulb (1994) Cell, 79, pp. 981-991
  • Vickers, N.J., Christensen, T.A., Baker, T.C., Hildebrand, J.G., Odour-plume dynamics influence the brain's olfactory code (2001) Nature, 410, pp. 466-470
  • Vincent, A.J., Taylor, J.M., Choi-Lundberg, D.L., West, A.K., Chuah, M.I., Genetic expression profile of olfactory ensheathing cells is distinct from that of Schwann cells and astrocytes (2005) Glia, 51, pp. 132-147
  • Walz, A., Rodriguez, I., Mombaerts, P., Aberrant sensory innervation of the olfactory bulb in neuropilin-2 mutant mice (2002) J. Neurosci., 22, pp. 4025-4035
  • Wicher, D., Schäfer, R., Bauernfeind, R., Stensmyr, M.C., Heller, R., Heinemann, S.H., Hansson, B.S., Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels (2008) Nature, 452, pp. 1007-1011
  • Yu, D., Ponomarev, A., Davis, R.L., Altered representation of the spatial code for odors after olfactory classical conditioning; Memory trace formation by synaptic recruitment (2004) Neuron, 42, pp. 437-449
  • Yu, Y., Boyer, N.P., Zhang, C., Three structurally similar odorants trigger distinct signaling pathways in a mouse olfactory neuron (2014) Neuroscience, 275 C, pp. 194-210

Citas:

---------- APA ----------
Locatelli, F.F. & Rela, L. (2014) . Mosaic activity patterns and their relation to perceptual similarity: Open discussions on the molecular basis and circuitry of odor recognition. Journal of Neurochemistry, 131(5), 546-553.
http://dx.doi.org/10.1111/jnc.12931
---------- CHICAGO ----------
Locatelli, F.F., Rela, L. "Mosaic activity patterns and their relation to perceptual similarity: Open discussions on the molecular basis and circuitry of odor recognition" . Journal of Neurochemistry 131, no. 5 (2014) : 546-553.
http://dx.doi.org/10.1111/jnc.12931
---------- MLA ----------
Locatelli, F.F., Rela, L. "Mosaic activity patterns and their relation to perceptual similarity: Open discussions on the molecular basis and circuitry of odor recognition" . Journal of Neurochemistry, vol. 131, no. 5, 2014, pp. 546-553.
http://dx.doi.org/10.1111/jnc.12931
---------- VANCOUVER ----------
Locatelli, F.F., Rela, L. Mosaic activity patterns and their relation to perceptual similarity: Open discussions on the molecular basis and circuitry of odor recognition. J. Neurochem. 2014;131(5):546-553.
http://dx.doi.org/10.1111/jnc.12931