Shmidt, M.S.; Arroyo Mañez, P.; Stortz, C.A.; Perillo, I.A.; Vega, D.; Blanco, M.M."Alkylation of 2- and 3-alkoxycarbonyl-4-quinolinones. DFT study on the regioselectivity" (2017) Journal of Molecular Structure. 1128:142-150
El editor solo permite la decarga de la versión post-print. Si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


The reaction of 2-alkoxycarbonyl-4-quinolinones (1) with a variety of alkylating reagents under different conditions, lead to the corresponding O-alkylated products. The behavior in basic medium of compounds 1 differs from the 3-alkoxycarbonyl-4-quinolinones (4) isomers suggesting that the position of the carboxylate group determines the regioselectivity of the reaction. DFT calculations allow us to conclude that for 3-alkoxycarbonyl-4-quinolinones, the N-alkylation would be thermodynamically and kinetically favored. But for 2-alkoxycarbonyl-4-quinolinones the side chain in the 2-position of the ring prevents the planar approximation to the contiguous heteroatom leading to a more favorable O-alkylation transition state. Crystal structure of an O-alkylated product is determined by single crystal X-ray diffractometry. © 2016 Elsevier B.V.


Documento: Artículo
Título:Alkylation of 2- and 3-alkoxycarbonyl-4-quinolinones. DFT study on the regioselectivity
Autor:Shmidt, M.S.; Arroyo Mañez, P.; Stortz, C.A.; Perillo, I.A.; Vega, D.; Blanco, M.M.
Filiación:Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Orgánica, Junín 956, CABA, 1113, Argentina
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Ciudad Universitaria, CABA, 1428, Argentina
Comisión Nacional de Energía Atómica, CAC-GAI y ANN, Departamento Física de la Materia Condensada y Universidad Nacional de San Martín, ECyT, Av. Gral. Paz 1499, San Martín, Buenos Aires 1650, Argentina
Palabras clave:4-Quinolones; Alkylation; B3LYP; DFT; Regioselectivity; Alkylation; Carboxylation; Chemical reactions; Isomers; Regioselectivity; Single crystals; X ray diffraction analysis; 4-Quinolones; Alkylating reagents; B3LYP; Basic medium; Carboxylate groups; DFT calculation; N-alkylation; Transition state; Crystal structure
Página de inicio:142
Página de fin:150
Título revista:Journal of Molecular Structure
Título revista abreviado:J. Mol. Struct.


  • These compounds are commonly known as 4-quinolones or 4-quinolinones; Among others:; Mitscher, L.A., Bacterial topoisomerase inhibitors: quinolone and pyridine antibacterial agents (2005) Chem. Rev., 105, pp. 559-592
  • Alós, J.-I., (2003) Enferm. Infect. Microbiol. Clin. Quinolonas, 21, pp. 261-268
  • Oliphant, C.M., Green, G.M., Quinolones: a comprehensive review (2002) Am. Fam. Physician, 65, pp. 455-465
  • Chen, Y.-C., Lu, P.-H., Pan, S.-L., Teng, C.-M., Kuo, S.-C., Lin, T.-P., Ho, Y.-F., Guh, J.H., Quinolone analogue inhibits tubulin polymerization and induces apoptosis via Cdk1-involved signaling pathways (2007) Biochem. Pharmacol., 74, pp. 10-19
  • Xia, Y., Yang, Z.-Y., Xia, P., Bastow, K.F., Nakanishi, Y., Nampoothiri, P., Hamel, E., Lee, K.-H., Antitumor agents. Part 226: synthesis and cytotoxicity of 2-phenyl-4-quinolone acetic acids and their esters (2003) Bioorg. Med. Chem. Lett., 13, pp. 2891-2893
  • Horchler, C.L., McCauley, J.P., Hall, J.E., Snyder, D.H., Moore, W.C., Hudzik, T.J., Chapdelaine, M.J., Synthesis of novel quinolone and quinoline-2-carboxylic acid (4-morpholin-4-yl-phenyl)amides: a late-stage diversification approach to potent 5HT1B antagonists (2007) Bioorg. Med. Chem., 15, pp. 939-950
  • Wube, A.A., Hüfner, A., Thomaschitz, C., Blunder, M., Kollroser, M., Bauer, R., Bucar, F., Design, synthesis and antimycobacterial activities of 1-methyl-2-alkenyl-4(1H)-quinolones (2011) Bioorg. Med. Chem., 19, pp. 567-579
  • Wube, A.A., Bucar, F., Hochfellner, C., Blunder, M., Bauer, R., Hüfner, A., Synthesis of N-substituted 2-[(1E)-alkenyl]-4-(1H)-quinolone derivatives as antimycobacterial agents against non-tubercular mycobacteria (2011) Eur. J. Med. Chem., 46, pp. 2091-2101
  • Ko, T.-C., Hour, M.-J., Lien, J.-C., Teng, C.-M., Lee, K.-H., Kuo, S.-C., Huang, L.-J., Synthesis of 4-alkoxy-2-phenylquinoline derivatives as potent antiplatelet agents (2001) Bioorg. Med. Chem. Lett., 11, pp. 279-282
  • Monaghan, D.T., Jane, D.E., Costa Blaise, M., Irvine, M., Fang, G., Positive and Negative Modulators of NMDA Receptors; WO2012019106 A2 (2012); Moinet, G., Correc, J.C., Arbellot de Vacqueur, A., Acidic Quinolines as Antihyperglycemics and Their Preparation (2003), FR 2864535–A1; Soeberdt, M., Preparation of Substituted Piperidine and Piperazine Amino Acid Derivatives as Melanocortin-4 Receptor Modulators (2004), EP1460073 A1; Cairns, H., Payne, A.R., The synthesis of 1-alkyl-1,4-dihydro-4-quinolone-2-carboxylic acids (1978) J. Heterocycl. Chem., 15, pp. 551-553
  • Soeberdt, M., Weyermann, P., von Sprecher, A., (2006), Substituted Piperidine and Piperazine Derivatives as Melanocortin-4 Receptor Modulators; US 20060241123 A1; Among others:; Kaminsky, D., Meltzer, R.I., Quinolone antibacterial agents. Oxolinic acid and related compounds (1968) J. Med. Chem., 11, pp. 160-163
  • Klopman, G., Macina, O.T., Levinson, M.E., Rosenkranz, H.S., Computer automated structure evaluation of quinolone antibacterial agents (1987) Antimicrob. Agents Chemother., 31, pp. 1831-1840
  • Among others:; de la Cruz, A., Elguero, J., Goya, P., Martínez, A., Pfleiderer, W., Tautomerism and acidity in 4-quinolone-3-carboxylic acid derivatives (1992) Tetrahedron, 48, pp. 6135-6150
  • Ito, H., Matsuoka, M., Ueda, Y., Takuma, M., Kudo, Y., Iguchi, K., Quinolinecarboxylic acid based fluorescent molecules: ratiometric response to Zn2+ 65 (2009) Tetrahedron, pp. 4235-4238
  • Almeida, A.I.S., Silva, V.L.M., Silva, A.M.S., Pinto, D.C.G.A., Cavaleiro, J.A.S., Syntheses of novel (E)-N-Methyl-2-styryl-4-quinolones (2008) Synlett, pp. 2593-2596
  • Mphahlele, M.J., El-Nahas, A.M., Tautomeric 2-arylquinolin-4(1H)-one derivatives, spectroscopic, X-ray and quantum chemical structural studies (2004) J. Mol. Struct., 688, pp. 129-136
  • Salituro, F.G., Harrison, B.L., Baron, B.M., Nyce, P.L., Stewart, K.T., Kehne, J.H., White, H.S., McDonald, I.A., 3-(2-Carboxyindol-3-yl)propionic acid-based antagonists of the N-methyl-D-aspartic acid receptor associated glycine binding site (1992) J. Med. Chem., 35, pp. 1791-1799
  • Jaen, J.C., Laborde, E., Bucsh, R.A., Caprathe, B.W., Sorenson, R.J., Fergus, J., Spiegel, K., Davis, R.E., Kynurenic acid derivatives inhibit the binding of nerve growth factor (NGF) to the low-affinity p75 NGF receptor (1995) J. Med. Chem., 38, pp. 4439-4445
  • Pain, C., Célanire, S., Guillaumet, G., Joseph, B., Synthesis of 5-substituted 2-(4- or 3-methoxyphenyl)-4(1H)-quinolones (2003) Tetrahedron, 59, pp. 9627-9633
  • Edmont, D., Rocher, R., Plisson, C., Chenault, J., Synthesis and evaluation of quinoline carboxyguanidines as antidiabetic agents (2000) Bioorg. Med. Chem. Lett., 10, pp. 1831-1834
  • Pandey, A.K., Sharma, R., Shivahare, R., Arora, A., Rastogi, N., Gupta, S., Chauhan, P.M.S., Synthesis of perspicamide a and related diverse analogues: their bioevaluation as potent antileishmanial agents (2013) J. Org. Chem., 78, pp. 1534-1546
  • Rádl, S., Rezková, H., Obadalová, I., Srbek, J., Břicháč, J., Pekárek, T., Synthesis of 2-(4-Isopropylthiazol-2-yl)-7-methoxy-8-methylquinolin-4-ol; a quinoline building block for simeprevir synthesis (2014) Synthesis, 46, pp. 899-908
  • Among others:; Hopkins, G.C., Jonak, J.P., Minnemeyer, H.J., Tieckelmann, H., Alkylations of heterocyclic ambident anions II. Alkylation of 2-Pyridone salts (1967) J. Org. Chem., 32, pp. 4040-4044
  • Frank, J., Mészáros, Z., Kömives, T., Márton, A.F., Dutka, F., Alkylation of quinolones with trialkyl phosphates. Part 2. Mechanistics studies (1980) J. Chem. Soc. Perkin Trans., 2, pp. 401-406
  • Makara, G., Keserű, G.M., Kovács, A., On the mechanism of the alkylation of quinoline and naphthyridine derivatives (1994) J. Chem. Soc. Perkin Trans., 2, pp. 591-594
  • Guo, Z.X., Cammidge, A.N., McKillop, A., Horwell, D.C., N- vs O-alkylation in 2(1H)-quinolinone derivatives (1999) Tetrahedron Lett., 40, pp. 6999-7002
  • Farias Morel, A., Larghi, E.L., Manke Selvero, M., Mild, efficient and selective silver carbonate mediated O-Alkylation of 4-Hydroxy-2-quinolones: synthesis of 2,4-Dialkoxyquinolines (2005) Synlett, pp. 2755-2758
  • Hadjeri, M., Mariotte, A.M., Boumendjel, A., Alkylation of 2-Phenyl-4-quinolones: synthetic and structural studies (2001) Chem. Pharm. Bull., 49, pp. 1352-1355
  • Elguero, J., Katritzky, A., Denisko, O., Prototropic tautomerism of heterocycles: heteroaromatic tautomerism. General overview and methodology (2000) Adv. Het. Chem., 76, pp. 1-84
  • Beak, P., Energies and alkylations of tautomeric heterocyclic compounds: old problems - new answers (1977) Acc. Chem. Res., 10, pp. 186-192
  • Pearson, R.G., Songstad, J., Application of the principle of hard and soft acids and bases to organic chemistry (1967) J. Am. Chem. Soc., 89, pp. 1827-1836
  • Klopman, G., Chemical reactivity and the concept of charge- and frontier-controlled reactions (1968) J. Am. Chem. Soc., 90, pp. 223-234
  • Blanco, M.M., Dal Maso, M., Shmidt, M.S., Perillo, I.A., Reaction of isatin-1-acetamides with alkoxides: synthesis of novel 1,4-Dihydro-3-hydroxy-4-oxo-2-quinolinecarboxamides (2007) Synthesis, 6, pp. 829-834
  • Shmidt, M.S., Perillo, I.A., González, M., Blanco, M.M., Reaction of isatin with alkylating agents with acidic methylenes (2012) Tetrahedron Lett., 53, pp. 2514-2517
  • Coltman, S.C.W., Eyley, S.C., Raphael, R.A., A new efficient route to 4-oxo-1,4-dihydroquinoline-2-carboxylic esters (1984) Synthesis, pp. 150-152
  •, CCDC 1495946 contains the supplementary crystallographic data for compound 3b. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via; Sheldrick, G.M., A short history of SHELX (2008) Acta Cryst. A, 64, pp. 112-122
  • Farrugia, L.J., WinGX suite for small-molecule single-crystal crystallography (1999) J. Appl. Cryst., 32, pp. 837-838
  • Farrugia, L.J., ORTEP-3 for windows - a version of ORTEP-III with a graphical user interface (GUI) (1997) J. Appl. Cryst., 30, p. 565
  • Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Fox, D.J., Gaussian 09, Revision A.02 (2009), Gaussian, Inc. Wallingford CT; Hehre, W.J., Radom, L., Schleyer, P.V.R., Pople, J.A., Ab Initio Molecular Orbital Theory (1986), Wiley New York; Schlegel, H.B.J., Optimization of equilibrium geometries and transition structures (1982) Comput. Chem., 3, pp. 214-218
  • Schlegel, H.B., Geometry optimization on potential energy surface (1994) Modern Electronic Structure Theory, , D.R. Yarkony World Scientific Singapore
  • Tapia, O., Solvent effect theories: quantum and classical formalisms and their applications in chemistry and biochemistry (1992) J. Math. Chem., 10, pp. 139-181
  • Tomasi, J., Persico, M., Molecular interactions in solution: an overview of methods based on continuous distributions of the solvent (1994) Chem. Rev., 94, pp. 2027-2094
  • Simkin, B.Y., Sheikhet, I., Quantum Chemical and Statistical Theory of Solutions - a Computational Approach (1995), Ellis Horwood London; Cances, M.T., Mennunci, V., Tomasi, J., A new integral equation formalism for the polarizable continuum model: theoretical background and applications to isotropic and anisotropic dielectrics (1997) J. Chem. Phys., 107, pp. 3032-3041
  • Cossi, M., Barone, V., Cammi, R., Tomasi, J., Ab initio study of solvated molecules: a new implementation of the polarizable continuum model (1996) Chem. Phys. Lett., 255, pp. 327-335
  • Barone, V., Cossi, M., Tomasi, J., Geometry optimization of molecular structures in solution by the polarizable continuum model (1998) J. Comp. Chem., 19, pp. 404-417
  • Markees, D.G., The thermal decomposition of ethyl 4-quinolonecarboxylates and related compounds (1966) J. Org. Chem., 31, pp. 4253-4255
  • Baker, reportReported that the Reaction of Kynurenic Acid (1, R = H) with CH3I/NaH in DMF at r.T. Leads to N-methyl Ester (32%); Baker, B.R., Bramhall, R.R., Irreversible enzyme inhibitors. 189. Inhibition of some dehydrogenases by derivatives of 4-hydroxyquinoline-2- and -3-carboxylic acids (1972) J. Med. Chem., 15, pp. 230-233


---------- APA ----------
Shmidt, M.S., Arroyo Mañez, P., Stortz, C.A., Perillo, I.A., Vega, D. & Blanco, M.M. (2017) . Alkylation of 2- and 3-alkoxycarbonyl-4-quinolinones. DFT study on the regioselectivity. Journal of Molecular Structure, 1128, 142-150.
---------- CHICAGO ----------
Shmidt, M.S., Arroyo Mañez, P., Stortz, C.A., Perillo, I.A., Vega, D., Blanco, M.M. "Alkylation of 2- and 3-alkoxycarbonyl-4-quinolinones. DFT study on the regioselectivity" . Journal of Molecular Structure 1128 (2017) : 142-150.
---------- MLA ----------
Shmidt, M.S., Arroyo Mañez, P., Stortz, C.A., Perillo, I.A., Vega, D., Blanco, M.M. "Alkylation of 2- and 3-alkoxycarbonyl-4-quinolinones. DFT study on the regioselectivity" . Journal of Molecular Structure, vol. 1128, 2017, pp. 142-150.
---------- VANCOUVER ----------
Shmidt, M.S., Arroyo Mañez, P., Stortz, C.A., Perillo, I.A., Vega, D., Blanco, M.M. Alkylation of 2- and 3-alkoxycarbonyl-4-quinolinones. DFT study on the regioselectivity. J. Mol. Struct. 2017;1128:142-150.