Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Biological nitrogen fixation is widespread among the Eubacteria and Archae domains but completely absent in eukaryotes. The lack of lateral transfer of nitrogen-fixation genes from prokaryotes to eukaryotes has been partially attributed to the physiological requirements necessary for the function of the nitrogenase complex. However, symbiotic bacterial nitrogenase activity is protected by the nodule, a plant structure whose organogenesis can be trigged in the absence of bacteria. To explore the intrinsic potentiality of this plant organ, we generated rhizobium-independent nodules in alfalfa by overexpressing the MsDMI3 kinase lacking the autoinhibitory domain. These transgenic nodules showed similar levels of leghemoglobin, free oxygen, ATP, and NADPH to those of efficient Sinorhizobium meliloti B399-infected nodules, suggesting that the rhizobium-independent nodules can provide an optimal microenvironment for nitrogenase activity. Finally, we discuss the intrinsic evolutionary constraints on transfer of nitrogen-fixation genes between bacteria and eukaryotes. © 2013 Springer Science+Business Media New York.

Registro:

Documento: Artículo
Título:Exploring the intrinsic limits of nitrogenase transfer from bacteria to eukaryotes
Autor:Soto, G.; Fox, A.R.; Ayub, N.D.
Filiación:Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avda. Rivadavia 1917, C1033AAJ Cuidad Autónoma de Buenos Aires, Argentina
Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Hector Torres, Vuelta de Obligado 2490, 1428 Buenos Aires, Argentina
Instituto de Genética Ewald A. Favret (CICVyA-INTA), De los reseros S/N, Castelar C25 (1712) Provincia de Buenos Aires, Argentina
Palabras clave:Bacteria; Eukaryotes; Evolution; Lateral transfer; Nitrogen fixation; Oxygen; Bacteria (microorganisms); Eukaryota; Medicago sativa; Prokaryota; Rhizobium; Sinorhizobium meliloti; nitrogenase; alfalfa; article; bacterium; classification; eukaryote; gene expression regulation; genetics; metabolism; nitrogen fixation; nodulation; phylogeny; Sinorhizobium meliloti; symbiosis; Bacteria; Eukaryota; Gene Expression Regulation, Plant; Medicago sativa; Nitrogen Fixation; Nitrogenase; Phylogeny; Plant Root Nodulation; Sinorhizobium meliloti; Symbiosis
Año:2013
Volumen:77
Número:1-2
Página de inicio:3
Página de fin:7
DOI: http://dx.doi.org/10.1007/s00239-013-9578-8
Título revista:Journal of Molecular Evolution
Título revista abreviado:J. Mol. Evol.
ISSN:00222844
CODEN:JMEVA
CAS:nitrogenase, 9013-04-1
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00222844_v77_n1-2_p3_Soto

Referencias:

  • Appleby, C.A., Bergersen, F.J., (1980) Preparation and Experimental Use of Leghaemoglobin, , (eds) Wiley Chichester
  • Appleby, C.A., Bradbury, J.H., Leghemoglobin: Kinetic, nuclear magnetic resonance, and optical studies of pH dependence of oxygen and carbon monoxide binding (1983) J Biol Chem, 258, pp. 2254-2259. , 6822555 1:CAS:528:DyaL3sXht1Wls70%3D
  • Caetano-Anollés, G., Joshi, P., Gresshoff, P., Spontaneous nodules induce feedback suppression of nodulation in alfalfa (1991) Planta, 18, pp. 77-82
  • Chen, C., Gao, M., Liu, J., Zhu, H., Fungal symbiosis in rice requires an ortholog of a legume common symbiosis gene encoding a Ca2+/calmodulin-dependent protein kinase (2007) Plant Physiol, 145, pp. 1619-1628. , 17965173 10.1104/pp.107.109876 1:CAS:528:DC%2BD2sXhsVCntb3O
  • Dalton, D.A., Langeberg, L., Treneman, N.C., Correlations between the ascorbate-glutathione pathway and effectiveness in legume root nodules (1993) Physiol Plant, 87, pp. 365-370. , 10.1111/j.1399-3054.1993.tb01743.x 1:CAS:528:DyaK3sXktVGjsLw%3D
  • Dixon, R., Kahn, D., Genetic regulation of biological nitrogen fixation (2004) Nat Rev Microbiol, 2, pp. 621-631. , 15263897 10.1038/nrmicro954 1:CAS:528:DC%2BD2cXlsl2ksLc%3D
  • Dixon, R., Cheng, Q., Shen, G.-F., Day, A., Dowson-Day, M., Nif gene transfer and expression in chloroplasts: Prospects and problems (1997) Plant Soil, 194, pp. 193-203. , 10.1023/A:1004296703638 1:CAS:528:DyaK2sXnt1Wms70%3D
  • Dos Santos, P., Fang, Z., Mason, S., Setubal, J., Dixon, R., Distribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomes (2012) BMC Genomics, 13, p. 162. , 22554235 10.1186/1471-2164-13-162 1:CAS:528:DC%2BC38XhsFOrs7zI
  • Gallon, J.R., N2 fixation in phototrophs: Adaptation to a specialized way of life (2001) Plant Soil, 230, pp. 39-48. , 10.1023/A:1004640219659 1:CAS:528:DC%2BD3MXivFKjt7k%3D
  • Gleason, C., Chaudhuri, S., Yang, T., Munoz, A., Poovaiah, B.W., Oldroyd, G.E., Nodulation independent of rhizobia induced by a calcium-activated kinase lacking autoinhibition (2006) Nature, 441, pp. 1149-1152. , 16810256 10.1038/nature04812 1:CAS:528:DC%2BD28Xmtlaiu7g%3D
  • Guiñazú, L.B., Andrés, J.A., Papa, M.F.D., Pistorio, M., Rosas, S.B., Response of alfalfa (Medicago sativa L.) to single and mixed inoculation with phosphate-solubilizing bacteria and Sinorhizobium meliloti (2010) Biol Fertil Soils, 46, pp. 185-190. , 10.1007/s00374-009-0408-5
  • Kechris, K., Lin, J.C., Bickel, P.J., Glazer, A.N., Quantitative exploration of the occurrence of lateral gene transfer by using nitrogen fixation genes as a case study (2006) PNAS, 103, pp. 9584-9589. , 16769896 10.1073/pnas.0603534103 1:CAS:528:DC%2BD28XmsVOnsL0%3D
  • Ladha, J.K., Reddy, P.M., Extension of nitrogen fixation to rice - Necessity and possibilities (1995) GeoJournal, 35, pp. 363-372. , 10.1007/BF00989144
  • McKay, C., Navarro-González, R., The absence of nitrogen-fixing organelles due to timing of the nitrogen crisis (2004) Symbiosis Cellular Origin, Life in Extreme Habitats and Astrobiology, pp. 221-228. , J. Seckbach (eds) vol 4 Springer The Netherlands
  • Mitra, R.M., Gleason, C.A., Edwards, A., A Ca2+/calmodulin-dependent protein kinase required for symbiotic nodule development: Gene identification by transcript-based cloning (2004) Proc Natl Acad Sci USA, 101, pp. 4701-4705. , 15070781 10.1073/pnas.0400595101 1:CAS:528:DC%2BD2cXjtFKisbk%3D
  • Ott, T., Van Dongen, J.T., Guâ̈nther, C., Symbiotic leghemoglobins are crucial for nitrogen fixation in legume root nodules but not for general plant growth and development (2005) Curr Biol, 15, pp. 531-535. , 15797021 10.1016/j.cub.2005.01.042 1:CAS:528:DC%2BD2MXis1Kmt7Y%3D
  • Peters, J.W., Szilagyi, R.K., Exploring new frontiers of nitrogenase structure and mechanism (2006) Curr Opin Chem Biol, 10, pp. 101-108. , 16510305 10.1016/j.cbpa.2006.02.019 1:CAS:528:DC%2BD28XjtFagt74%3D
  • Setten, L., Soto, G., Mozzicafreddo, M., Engineering pseudomonas protegens Pf-5 for nitrogen fixation and its application to improve plant growth under nitrogen-deficient conditions (2013) PLoS ONE, 8, p. 63666. , 23675499 10.1371/journal.pone.0063666 1:CAS:528:DC%2BC3sXot1Wgtb0%3D
  • Soto, G., Alleva, K., Mazzella, M.A., Amodeo, G., Muschietti, J.P., AtTIP1;3 and AtTIP5;1, the only highly expressed Arabidopsis pollen-specific aquaporins, transport water and urea (2008) FEBS Lett, 582, pp. 4077-4482. , 19022253 10.1016/j.febslet.2008.11.002 1:CAS:528:DC%2BD1cXhsVGhtLvE
  • Soto, G., Stritzler, M., Lisi, C., Acetoacetyl-CoA thiolase regulates the mevalonate pathway during abiotic stress adaptation (2011) J Exp Bot, 62, pp. 5699-5711. , 21908473 10.1093/jxb/err287 1:CAS:528:DC%2BC3MXhsFCit7zO
  • Syvanen, M., Evolutionary implications of horizontal gene transfer (2012) Annu Rev Genet, 46, pp. 341-358. , 22934638 10.1146/annurev-genet-110711-155529 1:CAS:528:DC%2BC38XhvVyktbfI
  • Tirichine, L., James, E.K., Sandal, N., Stougaard, J., Spontaneous root-nodule formation in the model legume Lotus japonicus: A novel class of mutants nodulates in the absence of rhizobia (2006) Mol Plant Microbe Interact, 19, pp. 373-382. , 16610740 10.1094/MPMI-19-0373 1:CAS:528:DC%2BD28XjtVagtLs%3D
  • Triplett, E., Diazotrophic endophytes: Progress and prospects for nitrogen fixation in monocots (1996) Plant Soil, 186, pp. 29-38. , 10.1007/BF00035052 1:CAS:528:DyaK2sXmvVWiug%3D%3D
  • Witty, J.F., Minchin, F.R., Nitrogen fixation and oxygen in legume root nodule (1986) Plant Cell Biol, 3, pp. 275-315. , 1:CAS:528:DyaL2sXhsFaqu70%3D

Citas:

---------- APA ----------
Soto, G., Fox, A.R. & Ayub, N.D. (2013) . Exploring the intrinsic limits of nitrogenase transfer from bacteria to eukaryotes. Journal of Molecular Evolution, 77(1-2), 3-7.
http://dx.doi.org/10.1007/s00239-013-9578-8
---------- CHICAGO ----------
Soto, G., Fox, A.R., Ayub, N.D. "Exploring the intrinsic limits of nitrogenase transfer from bacteria to eukaryotes" . Journal of Molecular Evolution 77, no. 1-2 (2013) : 3-7.
http://dx.doi.org/10.1007/s00239-013-9578-8
---------- MLA ----------
Soto, G., Fox, A.R., Ayub, N.D. "Exploring the intrinsic limits of nitrogenase transfer from bacteria to eukaryotes" . Journal of Molecular Evolution, vol. 77, no. 1-2, 2013, pp. 3-7.
http://dx.doi.org/10.1007/s00239-013-9578-8
---------- VANCOUVER ----------
Soto, G., Fox, A.R., Ayub, N.D. Exploring the intrinsic limits of nitrogenase transfer from bacteria to eukaryotes. J. Mol. Evol. 2013;77(1-2):3-7.
http://dx.doi.org/10.1007/s00239-013-9578-8