Artículo

Cosentino, M.S.; Oses, C.; Vázquez Echegaray, C.; Solari, C.; Waisman, A.; Álvarez, Y.; Petrone, M.V.; Francia, M.; Schultz, M.; Sevlever, G.; Miriuka, S.; Levi, V.; Guberman, A. "Kat6b Modulates Oct4 and Nanog Binding to Chromatin in Embryonic Stem Cells and Is Required for Efficient Neural Differentiation" (2019) Journal of Molecular Biology. 431(6):1148-1159
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Chromatin remodeling is fundamental for the dynamical changes in transcriptional programs that occur during development and stem cell differentiation. The histone acetyltransferase Kat6b is relevant for neurogenesis in mouse embryos, and mutations of this gene cause intellectual disability in humans. However, the molecular mechanisms involved in Kat6b mutant phenotype and the role of this chromatin modifier in embryonic stem (ES) cells remain elusive. In this work, we show that Kat6b is expressed in ES cells and is repressed during differentiation. Moreover, we found that this gene is regulated by the pluripotency transcription factors Nanog and Oct4. To study the functional relevance of Kat6b in ES cells, we generated a Kat6b knockout ES cell line (K6b −/−) using CRISPR/Cas9. Fluorescence correlation spectroscopy analyses suggest a more compact chromatin organization in K6b −/− cells and impaired interactions of Oct4 and Nanog with chromatin. Remarkably, K6b −/− cells showed a reduced efficiency to differentiate to neural lineage. These results reveal a role of Kat6b as a modulator of chromatin plasticity, its impact on chromatin-transcription factors interactions and its influence on cell fate decisions during neural development. © 2019 Elsevier Ltd

Registro:

Documento: Artículo
Título:Kat6b Modulates Oct4 and Nanog Binding to Chromatin in Embryonic Stem Cells and Is Required for Efficient Neural Differentiation
Autor:Cosentino, M.S.; Oses, C.; Vázquez Echegaray, C.; Solari, C.; Waisman, A.; Álvarez, Y.; Petrone, M.V.; Francia, M.; Schultz, M.; Sevlever, G.; Miriuka, S.; Levi, V.; Guberman, A.
Filiación:Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Buenos Aires, Argentina
CONICET—Universidad de Buenos Aires, Instituto de Química Biológica (IQUIBICEN), Buenos Aires, Argentina
CONICET—Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Laboratorio de Investigación de Aplicación a Neurociencias (LIAN), Buenos Aires, Argentina
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Buenos Aires, Argentina
Established investigators from the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
Palabras clave:CRISPR/Cas9; fluorescence correlation spectroscopy; neural progenitors; pluripotency transcription factors; super-enhancer; CRISPR associated endonuclease Cas9; heterochromatin protein 1; heterochromatin protein 1 alpha; histone acetyltransferase; histone acetyltransferase Kat6b; Ki 67 antigen; messenger RNA; octamer transcription factor 4; short hairpin RNA; transcription factor NANOG; transcription factor Sox2; unclassified drug; animal cell; animal experiment; Article; cell fate; cell lineage; cell proliferation; cell structure; cell viability; cellular distribution; chromatin; chromatin assembly and disassembly; controlled study; CRISPR-CAS9 system; embryo; embryonic stem cell; epigenetics; fluorescence correlation spectroscopy; gene expression; gene knockout; genetic transcription; immunochemistry; Kat6b gene; male; molecular dynamics; mouse; nerve cell differentiation; nerve cell plasticity; neural stem cell; neuromodulation; nonhuman; priority journal; protein analysis; protein binding; protein expression; protein function; protein protein interaction; RNA sequence; stem cell self-renewal
Año:2019
Volumen:431
Número:6
Página de inicio:1148
Página de fin:1159
DOI: http://dx.doi.org/10.1016/j.jmb.2019.02.012
Título revista:Journal of Molecular Biology
Título revista abreviado:J. Mol. Biol.
ISSN:00222836
CODEN:JMOBA
CAS:CRISPR associated endonuclease Cas9; esterase; histone acetyltransferase, 9054-51-7; histone acetyltransferase KAT5
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00222836_v431_n6_p1148_Cosentino

Referencias:

  • White, M.D., Angiolini, J.F., Alvarez, Y.D., Kaur, G., Zhao, Z.W., Mocskos, E., Bruno, L., Plachta, N., Long-lived binding of Sox2 to DNA predicts cell fate in the four-cell mouse embryo (2016) Cell., 165, pp. 75-87
  • Goolam, M., Scialdone, A., Graham, S.J.L., Voet, T., Marioni, J.C., Zernicka-goetz, M., Goolam, M., Jedrusik, A., Heterogeneity in Oct4 and Sox2 targets biases cell fate in 4-cell mouse embryos (2016) Cell., 165, pp. 61-74
  • Torres-Padilla, M.-E., Parfitt, D.-E., Kouzarides, T., Zernicka-Goetz, M., Histone arginine methylation regulates cell fate and pluripotency in the early mouse embryo (2007) Nature., 445, pp. 214-218
  • Ronan, J.L., Wu, W., Crabtree, G.R., From neural development to cognition: unexpected roles for chromatin (2013) Nat. Rev. Genet., 14, pp. 347-359
  • Tatton-Brown, K., Loveday, C., Yost, S., Clarke, M., Ramsay, E., Zachariou, A., Elliott, A., Rahman, N., Mutations in epigenetic regulation genes are a major cause of overgrowth with intellectual disability (2017) Am. J. Hum. Genet., 100, pp. 725-736
  • Han, P., Hang, C.T., Yang, J., Chang, C., Chromatin remodeling in cardiovascular development and physiology (2011) Circ. Res., pp. 327-339
  • Merson, T.D., Dixon, M.P., Collin, C., Rietze, R.L., Bartlett, P.F., Thomas, T., Voss, A.K., The transcriptional coactivator Querkopf controls adult neurogenesis (2006) J. Neurosci., 26, pp. 11359-11370
  • Thomas, T., Voss, A.K., Chowdhury, K., Gruss, P., Querkopf, a MYST family histone acetyltransferase, is required for normal cerebral cortex development (2000) Development., 127, pp. 2537-2548
  • Clayton-Smith, J., O'Sullivan, J., Daly, S., Bhaskar, S., Day, R., Anderson, B., Voss, A.K., Black, G., Whole-exome-sequencing identifies mutations in histone acetyltransferase gene KAT6B in individuals with the Say–Barber–Biesecker variant of Ohdo syndrome (2011) Am. J. Hum. Genet., 89, pp. 675-681
  • Szakszon, K., Salpietro, C., Kakar, N., Knegt, A.C., Oláh, É., Dallapiccola, B., Borck, G., De novo mutations of the gene encoding the histone acetyltransferase KAT6B in two patients with Say–Barber/Biesecker/Young–Simpson syndrome (2013) Am. J. Med. Genet., 161, pp. 884-888
  • Campeau, P.M., Kim, J.C., Lu, J.T., Schwartzentruber, J.A., Abdul-Rahman, O.A., Schlaubitz, S., Murdock, D.M., Lee, B.H., Mutations in KAT6B, encoding a histone acetyltransferase, cause genitopatellar syndrome (2012) Am. J. Hum. Genet., 90, pp. 282-289
  • Keller, G.M., In vitro differentiation of embryonic stem cells (1995) Curr. Opin. Cell Biol., 7, pp. 862-869
  • Barberi, T., Klivenyi, P., Calingasan, N.Y., Lee, H., Kawamata, H., Loonam, K., Perrier, A.L., Studer, L., Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in parkinsonian mice (2003) Nat. Biotechnol., 21, pp. 1200-1207
  • Thomson, M., Liu, S.J., Zou, L.N., Smith, Z., Meissner, A., Ramanathan, S., Pluripotency factors in embryonic stem cells regulate differentiation into germ layers (2011) Cell., 145, pp. 875-889
  • Murry, C.E., Keller, G., Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development (2008) Cell., 132, pp. 661-680
  • Boyer, L., Lee, T.I.T.I., Cole, M.F.M.F., Johnstone, S.E.S.E., Stuart, S., Zucker, J.P.J.P., Guenther, M.G.M.G., Levine, S.S., Core transcriptional regulatory circuitry in human embryonic stem cells (2005) Cell., 122, pp. 947-956
  • Loh, Y.H., Wu, Q., Chew, J.L., Vega, V.B., Zhang, W., Chen, X., Bourque, G., Ng, H.H., The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells (2006) Nat. Genet., 38, pp. 431-440
  • Whyte, W.A., Orlando, D.A., Hnisz, D., Abraham, B.J., Lin, C.Y., Kagey, M.H., Rahl, P.B., Young, R.A., Master transcription factors and mediator establish super-enhancers at key cell identity genes (2013) Cell., 153, pp. 307-319
  • Grewal, S.I.S., Jia, S., Heterochromatin revisited (2007) Nat. Rev. Genet., 8, pp. 35-46
  • Meissner, A., Epigenetic modifications in pluripotent and differentiated cells (2010) Nat. Biotechnol., 28, pp. 1079-1088
  • Kwon, S.H., Florens, L., Swanson, S.K., Kwon, S.H., Florens, L., Swanson, S.K., Washburn, M.P., Workman, J.L., Heterochromatin protein 1 (HP1) connects the FACT histone chaperone complex to the phosphorylated CTD of RNA polymerase II (2010) Genes Dev., 24, pp. 2133-2145
  • Kwon, S.H., Workman, J.L., The changing faces of HP1: from heterochromatin formation and gene silencing to euchromatic gene expression (2011) BioEssays., 33, pp. 280-289
  • Meshorer, E., Yellajoshula, D., George, E., Scambler, P.J., Brown, D.T., Misteli, T., Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells (2006) Dev. Cell, 10, pp. 105-116
  • Melcer, S., Hezroni, H., Rand, E., Nissim-rafinia, M., Skoultchi, A., Stewart, C.L., Bustin, M., Meshorer, E., Histone modifications and Lamin A regulate chromatin protein dynamics in early embryonic stem cell differentiation (2012) Nat. Commun., 3
  • Bhattacharya, D., Talwar, S., Mazumder, A., Shivashankar, G.V., Spatio-temporal plasticity in chromatin organization in mouse cell differentiation and during Drosophila embryogenesis (2009) Biophys. J., 96, pp. 3832-3839
  • Dialynas, G.K., Terjung, S., Brown, J.P., Aucott, R.L., Baron-luhr, B., Singh, P.B., Georgatos, S.D., Plasticity of HP1 proteins in mammalian cells (2007) J. Cell Sci., 120, pp. 3415-3423
  • Hinde, E., Cardarelli, F., Gratton, E., Spatiotemporal regulation of heterochromatin protein 1-alpha oligomerization and dynamics in live cells (2015) Sci. Rep., 5, pp. 1-11
  • Ritou, E., Bai, M., Georgatos, S.D., Variant-specific patterns and humoral regulation of HP1 proteins in human cells and tissues (2007) J. Cell Sci., 120, pp. 3425-3435
  • Minc, E., Allory, Y., Worman, H.J., Courvalin, J., Buendia, B., Localization and phosphorylation of HP1 proteins during the cell cycle in mammalian cells (1999) Chromosoma., 7, pp. 220-234
  • Stortz, M., Presman, D.M., Bruno, L., Annibale, P., Maria, V., Burton, G., Gratton, E., Levi, V., Mapping the dynamics of the glucocorticoid receptor within the nuclear landscape (2017) Sci. Rep., 7
  • Normanno, D., Dahan, M., Darzacq, X., Intra-nuclear mobility and target search mechanisms of transcription factors: a single-molecule perspective on gene expression (2012) Biochim. Biophys. Acta, 1819, pp. 482-493
  • Young, R.A., Control of embryonic stem cell state (2011) Cell., 144, pp. 940-954
  • Orkin, S.H., Hochedlinger, K., Chromatin connections to pluripotency and cellular reprogramming (2011) Cell., 145, pp. 835-850
  • Sterner, D.E., Berger, S.L., Acetylation of histones and transcription-related factors (2000) Microbiol. Mol. Biol. Rev., 64, pp. 435-459
  • Brown, C.E., Lechner, T., Howe, L., Workman, J.L., The many HATs of transcription coactivators (2000) Trends Biochem. Sci., 25, pp. 15-19
  • Narlikar, G.J., Fan, H., Kingston, R.E., Cooperation between complexes that regulate chromatin structure and transcription (2002) Cell., 108, pp. 475-487
  • Choudhary, C., Kumar, C., Gnad, F., Nielsen, M.L., Rehman, M., Walther, T.C., Olsen, J.V., Mann, M., Lysine acetylation targets protein complexes and co-regulates major cellular functions (2009) Science., 325, pp. 834-840
  • Tan, Y., Xue, Y., Song, C., Grunstein, M., Acetylated histone H3K56 interacts with Oct4 to promote mouse embryonic stem cell pluripotency (2013) Proc. Natl. Acad. Sci. U. S. A., 110, pp. 11493-11498
  • Kim, M.S., Cho, H.I., Park, S.H., Kim, J.H., Chai, Y.G., Jang, Y.K., The histone acetyltransferase Myst2 regulates Nanog expression, and is involved in maintaining pluripotency and self-renewal of embryonic stem cells (2015) FEBS Lett., 589, pp. 941-950
  • Sheikh, B.N., Akhtar, A., The many lives of KATs—detectors, integrators and modulators of the cellular environment (2019) Nat. Rev. Genet., 20 (1), pp. 7-23
  • Kloc, A., Ivanova, N., Chromatin and pluripotency: the MYSTerious connection (2012) Cell Stem Cell, 11, pp. 139-140
  • Williams, E.O., Taylor, A.K., Bell, E.L., Lim, R., Kim, D.M., Guarente, L., Sirtuin 1 promotes deacetylation of Oct4 and maintenance of naive pluripotency (2016) Cell Rep., 17, pp. 809-820
  • Wamstad, J.A., Alexander, J.M., Truty, R.M., Shrikumar, A., Li, F., Eilertson, K.E., Ding, H., Bruneau, B.G., Dynamic and coordinated epigenetic regulation of developmental transitions in the cardiac lineage (2012) Cell., 151, pp. 206-220
  • Christodoulou, C., Longmire, T.A., Shen, S.S., Bourdon, A., Sommer, C.A., Gadue, P., Spira, A., Kotton, D.N., Mouse ES and iPS cells can form similar definitive endoderm despite differences in imprinted genes (2011) J. Clin. Invest., 121, pp. 2313-2325
  • Ouyang, Z., Zhou, Q., Wong, W.H., ChIP-Seq of transcription factors predicts absolute and differential gene expression in embryonic stem cells (2009) Proc. Natl. Acad. Sci., 106, pp. 21521-21526
  • Cloonan, N., Forrest, A.R.R., Kolle, G., Gardiner, B.B.A., Faulkner, G.J., Brown, M.K., Taylor, D.F., Grimmond, S.M., Stem cell transcriptome profiling via massive-scale mRNA sequencing (2008) Nat. Methods, 5, pp. 613-619
  • Sene, K., Porter, C.J., Palidwor, G., Perez-Iratxeta, C., Muro, E.M., Campbell, P.A., Rudnicki, M.A., Andrade-Navarro, M.A., Gene function in early mouse embryonic stem cell differentiation (2007) BMC Genomics, 8, pp. 1-21
  • Solari, C., Echegaray, C.V., Cosentino, M.S., Petrone, M.V., Waisman, A., Luzzani, C., Francia, M., Guberman, A., Manganese superoxide dismutase gene expression is induced by Nanog and Oct4, essential pluripotent stem cells' transcription factors (2015) PLoS One, 10, pp. 1-12
  • Solari, C., Victoria, M., Vazquez, C., Soledad, M., Waisman, A., Francia, M., Barañao, L., Superoxide dismutase 1 expression is modulated by the core pluripotency transcription factors Oct4, Sox2 and Nanog in embryonic stem cells (2018) Mech. Dev.
  • Nichols, J., Smith, A., Naive and primed pluripotent states (2009) Cell Stem Cell, 4, pp. 487-492
  • Ying, Q.-L., Ying, Q.-L., Wray, J., Wray, J., Nichols, J., Nichols, J., Batlle-Morera, L., Smith, A., The ground state of embryonic stem cell self-renewal (2008) Nature., 453, pp. 519-523
  • Kolodziejczyk, A.A., Kim, J.K., Tsang, J.C.H., Ilicic, T., Henriksson, J., Natarajan, K.N., Tuck, A.C., Teichmann, S.A., Single cell RNA-sequencing of pluripotent states unlocks modular transcriptional variation (2015) Cell Stem Cell, 17, pp. 471-485
  • Pelletier, N., Champagne, N., Stifani, S., Yang, X.J., MOZ and MORF histone acetyltransferases interact with the Runt-domain transcription factor Runx2 (2002) Oncogene., 21, pp. 2729-2740
  • Mu, W.-L., Wang, Y.-J., Xu, P., Hao, D.-L., Liu, X.-Z., Wang, T.-T., Chen, F., Liu, D.-P., Sox2 deacetylation by Sirt1 is involved in mouse somatic reprogramming (2015) Stem Cells, 33, pp. 2135-2147
  • Baltus, G.A., Kowalski, M.P., Zhai, H., Tutter, A.V., Quinn, D., Wall, D., Kadam, S., Acetylation of Sox2 induces its nuclear export in embryonic stem cells (2009) Stem Cells, 27, pp. 2175-2184
  • Abranches, E., Silva, M., Pradier, L., Schulz, H., Hummel, O., Henrique, D., Bekman, E., Neural differentiation of embryonic stem cells in vitro: a road map to neurogenesis in the embryo (2009) PLoS One, 4
  • Ying, Q.-L., Smith, A., Defined conditions for neural commitment (2003) Methods Enzymol., 365, pp. 327-341
  • Ying, Q.L., Stavridis, M., Griffiths, D., Li, M., Smith, A., Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture (2003) Nat. Biotechnol., 21, pp. 183-186
  • Scott, E.K., Lee, T., Luo, L., Enok encodes a Drosophila putative histone acetyltransferase required for mushroom body neuroblast proliferation (2001) Curr. Biol., 11, pp. 99-104
  • Howe, L., Auston, D., Grant, P., John, S., Cook, R.G., Workman, J.L., Pillus, L., Histone H3 specific acetyltransferases are essential for cell cycle progression (2001) Genes Dev., 15, pp. 3144-3154
  • Rokudai, S., Aikawa, Y., Tagata, Y., Tsuchida, N., Taya, Y., Kitabayashi, I., Monocytic leukemia zinc finger (MOZ) interacts with p53 to induce p21 expression and cell-cycle arrest (2009) J. Biol. Chem., 284, pp. 237-244
  • He, W., Zhang, M.-G., Wang, X.-J., Zhong, S., Shao, Y., Zhu, Y., Shen, Z.-J., KAT5 and KAT6B are in positive regulation on cell proliferation of prostate cancer through PI3K–AKT signaling (2013) Int. J. Clin. Exp. Pathol., 6, pp. 2864-2871
  • McGraw, C., Samaco, R., Zoghbi, H., Adult neural function requires MeCP2 (2012) Science, 333 (80), pp. 2011-2013
  • Heckman, L.D., Chahrour, M.H., Zoghbi, H.Y., Rett-causing mutations reveal two domains critical for MeCP2 function and for toxicity in MECP2 duplication syndrome mice (2014) Elife., 3, pp. 1-17
  • Petrij, F., Giles, R., Dauwerse, H., Saris, J., Hennekam, R., Masuno, M., Tommerup, N., Breuning, M., Rubinstein–Taybi syndrome caused by mutations in the transcriptional co-activator CBP (1955) Nature., 376, pp. 348-351
  • Wang, J., Weaver, I.C.G., Gauthier-Fisher, A., Wang, H., He, L., Yeomans, J., Wondisford, F., Miller, F.D., CBP histone acetyltransferase activity regulates embryonic neural differentiation in the normal and Rubinstein–Taybi syndrome brain (2010) Dev. Cell, 18, pp. 114-125
  • Tsurusaki, Y., Okamoto, N., Ohashi, H., Kosho, T., Imai, Y., Hibi-Ko, Y., Kaname, T., Matsumoto, N., Mutations affecting components of the SWI/SNF complex cause Coffin–Siris syndrome (2012) Nat. Genet., 44, pp. 376-378
  • Van Houdt, J.K.J., Nowakowska, B.A., Sousa, S.B., Van Schaik, B.D.C., Seuntjens, E., Avonce, N., Sifrim, A., Vermeesch, J.R., Heterozygous missense mutations in SMARCA2 cause Nicolaides–Baraitser syndrome (2012) Nat. Genet., 44, pp. 445-449
  • Williams, S.R., Aldred, M.A., Der Kaloustian, V.M., Halal, F., Gowans, G., McLeod, D.R., Zondag, S., Elsea, S.H., Haploinsufficiency of HDAC4 causes brachydactyly mental retardation syndrome, with brachydactyly type E, developmental delays, and behavioral problems (2010) Am. J. Hum. Genet., 87, pp. 219-228
  • Gibson, W.T., Hood, R.L., Zhan, S.H., Bulman, D.E., Fejes, A.P., Moore, R., Mungall, A.J., Jones, S.J.M., Mutations in EZH2 cause weaver syndrome (2012) Am. J. Hum. Genet., 90, pp. 110-118
  • Losino, N., Luzzani, C., Solari, C., Boffi, J., Tisserand, M.L., Sevlever, G., Barañao, L., Guberman, A., Maintenance of murine embryonic stem cells' self-renewal and pluripotency with increase in proliferation rate by a bovine granulosa cell line-conditioned medium (2011) Stem Cells Dev., 20, pp. 1439-1449
  • Uphoff, C.C., Drexler, H.G., Detecting mycoplasma contamination in cell cultures by polymerase chain reaction (2011) Cancer Cell Cult., 731, pp. 93-103
  • Waisman, A., Echegaray, C.V., Solari, C., Cosentino, M.S., Martyn, I., Deglincerti, A., Ozair, M.Z., Guberman, A., Inhibition of cell division and DNA replication impair mouse-naïve pluripotency exit (2017) J. Mol. Biol.
  • Di Rienzo, J., Casanoves, F., Balzarini, M., Gonzalez, L., Tablada, M., Robledo, C., Infostat—Sofware estadístico, Grup. InfoStat, FCA, Univ. Nac. Córdoba, Argentina (2016), http//www.infostat.com.ar

Citas:

---------- APA ----------
Cosentino, M.S., Oses, C., Vázquez Echegaray, C., Solari, C., Waisman, A., Álvarez, Y., Petrone, M.V.,..., Guberman, A. (2019) . Kat6b Modulates Oct4 and Nanog Binding to Chromatin in Embryonic Stem Cells and Is Required for Efficient Neural Differentiation. Journal of Molecular Biology, 431(6), 1148-1159.
http://dx.doi.org/10.1016/j.jmb.2019.02.012
---------- CHICAGO ----------
Cosentino, M.S., Oses, C., Vázquez Echegaray, C., Solari, C., Waisman, A., Álvarez, Y., et al. "Kat6b Modulates Oct4 and Nanog Binding to Chromatin in Embryonic Stem Cells and Is Required for Efficient Neural Differentiation" . Journal of Molecular Biology 431, no. 6 (2019) : 1148-1159.
http://dx.doi.org/10.1016/j.jmb.2019.02.012
---------- MLA ----------
Cosentino, M.S., Oses, C., Vázquez Echegaray, C., Solari, C., Waisman, A., Álvarez, Y., et al. "Kat6b Modulates Oct4 and Nanog Binding to Chromatin in Embryonic Stem Cells and Is Required for Efficient Neural Differentiation" . Journal of Molecular Biology, vol. 431, no. 6, 2019, pp. 1148-1159.
http://dx.doi.org/10.1016/j.jmb.2019.02.012
---------- VANCOUVER ----------
Cosentino, M.S., Oses, C., Vázquez Echegaray, C., Solari, C., Waisman, A., Álvarez, Y., et al. Kat6b Modulates Oct4 and Nanog Binding to Chromatin in Embryonic Stem Cells and Is Required for Efficient Neural Differentiation. J. Mol. Biol. 2019;431(6):1148-1159.
http://dx.doi.org/10.1016/j.jmb.2019.02.012