Artículo

Giono, L.E.; Nieto Moreno, N.; Cambindo Botto, A.E.; Dujardin, G.; Muñoz, M.J.; Kornblihtt, A.R. "The RNA Response to DNA Damage" (2016) Journal of Molecular Biology. 428(12):2636-2651
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Multicellular organisms must ensure genome integrity to prevent accumulation of mutations, cell death, and cancer. The DNA damage response (DDR) is a complex network that senses, signals, and executes multiple programs including DNA repair, cell cycle arrest, senescence, and apoptosis. This entails regulation of a variety of cellular processes: DNA replication and transcription, RNA processing, mRNA translation and turnover, and post-translational modification, degradation, and relocalization of proteins. Accumulated evidence over the past decades has shown that RNAs and RNA metabolism are both regulators and regulated actors of the DDR. This review aims to present a comprehensive overview of the current knowledge on the many interactions between the DNA damage and RNA fields. © 2016 Elsevier Ltd.

Registro:

Documento: Artículo
Título:The RNA Response to DNA Damage
Autor:Giono, L.E.; Nieto Moreno, N.; Cambindo Botto, A.E.; Dujardin, G.; Muñoz, M.J.; Kornblihtt, A.R.
Filiación:Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires, C1428EHA, Argentina
Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires, C1428EHA, Argentina
Centre for Genomic Regulation, Dr. Aiguader 88, Barcelona, E-08003, Spain
Palabras clave:alternative splicing; DNA damage response; ncRNAs; p53; RNA processing; caspase 2; caspase 8; caspase 9; cyclin D1; cyclin E; DNA; elastin; Fas antigen; fibronectin; growth arrest and DNA damage inducible protein 45; heterogeneous nuclear ribonucleoprotein; heterogeneous nuclear ribonucleoprotein C; heterogeneous nuclear ribonucleoprotein K; long untranslated RNA; messenger RNA; microRNA; protein Bax; protein bcl x; protein p21; protein p53; RNA; RNA polymerase II; survivin; untranslated RNA; RNA; alternative RNA splicing; DNA damage; DNA transcription; excision repair; genetic transcription; human; nonhuman; priority journal; protein localization; Review; RNA degradation; RNA metabolism; RNA processing; RNA translation; transcription elongation; translation regulation; DNA damage; DNA repair; gene expression; genetics; DNA Damage; DNA Repair; Gene Expression; Humans; RNA
Año:2016
Volumen:428
Número:12
Página de inicio:2636
Página de fin:2651
DOI: http://dx.doi.org/10.1016/j.jmb.2016.03.004
Título revista:Journal of Molecular Biology
Título revista abreviado:J. Mol. Biol.
ISSN:00222836
CODEN:JMOBA
CAS:caspase 2, 182372-14-1; caspase 8; caspase 9, 180189-96-2; DNA, 9007-49-2; elastin, 9007-58-3; fibronectin, 86088-83-7; protein p21, 85306-28-1; RNA, 63231-63-0; survivin, 195263-98-0; RNA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00222836_v428_n12_p2636_Giono

Referencias:

  • Crick, F., Split genes and RNA splicing (1979) Science, 204, pp. 264-271
  • Pan, Q., Shai, O., Lee, L.J., Frey, B.J., Blencowe, B.J., Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing (2008) Nat. Genet., 40, pp. 1413-1415
  • Chabot, B., Shkreta, L., Defective control of pre-messenger RNA splicing in human disease (2016) J. Cell Biol., 212, pp. 13-27
  • St Laurent, G., Wahlestedt, C., Kapranov, P., The landscape of long noncoding RNA classification (2015) Trends Genet., 31, pp. 239-251
  • Wei, W., Ba, Z., Gao, M., Wu, Y., Ma, Y., Amiard, S., A role for small RNAs in DNA double-strand break repair (2012) Cell., 149, pp. 101-112
  • D'Adda di Fagagna, F., A direct role for small non-coding RNAs in DNA damage response (2014) Trends Cell Biol., 24, pp. 171-178
  • Lindahl, T., Instability and decay of the primary structure of DNA (1993) Nature, 362, pp. 709-715
  • Hoeijmakers, J.H., DNA damage, aging, and cancer (2009) N. Engl. J. Med., 361, pp. 1475-1485
  • Ciccia, A., Elledge, S.J., The DNA damage response: Making it safe to play with knives (2010) Mol. Cell., 40, pp. 179-204
  • Harper, J.W., Elledge, S.J., The DNA damage response: Ten years after (2007) Mol. Cell, 28, pp. 739-745
  • Jackson, S.P., Bartek, J., The DNA-damage response in human biology and disease (2009) Nature., 461, pp. 1071-1078
  • Polo, S.E., Jackson, S.P., Dynamics of DNA damage response proteins at DNA breaks: A focus on protein modifications (2011) Genes Dev., 25, pp. 409-433
  • Huen, M.S., Chen, J., The DNA damage response pathways: At the crossroad of protein modifications (2008) Cell Res., 18, pp. 8-16
  • Giono, L.E., Manfredi, J.J., The p53 tumor suppressor participates in multiple cell cycle checkpoints (2006) J. Cell. Physiol., 209 (1), pp. 13-20
  • Bieging, K.T., Mello, S.S., Attardi, L.D., Unravelling mechanisms of p53-mediated tumour suppression (2014) Nat. Rev. Cancer., 14, pp. 359-370
  • Vousden, K.H., Prives, C., Blinded by the light: The growing complexity of p53 (2009) Cell., 137, pp. 413-431
  • McKay, B.C., Post-transcriptional regulation of DNA damage-responsive gene expression (2014) Antioxid. Redox Signal., 20, pp. 640-654
  • Hsin, J.P., Manley, J.L., The RNA polymerase II CTD coordinates transcription and RNA processing (2012) Genes Dev., 26, pp. 2119-2137
  • Derheimer, F.A., O'Hagan, H.M., Krueger, H.M., Hanasoge, S., Paulsen, M.T., Ljungman, M., RPA and ATR link transcriptional stress to p53 (2007) Proc. Natl. Acad. Sci. U. S. A., 104, pp. 12778-12783
  • Winsor, T.S., Bartkowiak, B., Bennett, C.B., Greenleaf, A.L., A DNA damage response system associated with the phosphoCTD of elongating RNA polymerase II (2013) PLoS ONE., 8
  • Vermeulen, W., Fousteri, M., Mammalian transcription-coupled excision repair (2013) Cold Spring Harb. Perspect. Biol., 5
  • Ratner, J.N., Balasubramanian, B., Corden, J., Warren, S.L., Bregman, D.B., Ultraviolet radiation-induced ubiquitination and proteasomal degradation of the large subunit of RNA polymerase II. Implications for transcription-coupled DNA repair (1998) J. Biol. Chem., 273, pp. 5184-5189
  • Desai, S.D., Zhang, H., Rodriguez-Bauman, A., Yang, J.M., Wu, X., Gounder, M.K., Transcription-dependent degradation of topoisomerase I-DNA covalent complexes (2003) Mol. Cell. Biol., 23, pp. 2341-2350
  • Brueckner, F., Hennecke, U., Carell, T., Cramer, P., CPD damage recognition by transcribing RNA polymerase II (2007) Science., 315, pp. 859-862
  • Wilson, M.D., Harreman, M., Svejstrup, J.Q., Ubiquitylation and degradation of elongating RNA polymerase II: The last resort (1829) Biochim. Biophys. Acta., 2013, pp. 151-157
  • Marteijn, J.A., Lans, H., Vermeulen, W., Hoeijmakers, J.H., Understanding nucleotide excision repair and its roles in cancer and ageing (2014) Nat. Rev. Mol. Cell Biol., 15, pp. 465-481
  • Hanawalt, P.C., Spivak, G., Transcription-coupled DNA repair: Two decades of progress and surprises (2008) Nat. Rev. Mol. Cell Biol., 9, pp. 958-970
  • Lindsey-Boltz, L.A., Sancar, A., RNA polymerase: The most specific damage recognition protein in cellular responses to DNA damage? (2007) Proc. Natl. Acad. Sci. U. S. A., 104, pp. 13213-13214
  • Peterlin, B.M., Brogie, J.E., Price, D.H., 7SK snRNA: A noncoding RNA that plays a major role in regulating eukaryotic transcription (2012) Wiley Interdiscip. Rev. RNA., 3, pp. 92-103
  • Amente, S., Gargano, B., Napolitano, G., Lania, L., Majello, B., Camptothecin releases P-TEFb from the inactive 7SK snRNP complex (2009) Cell Cycle., 8, pp. 1249-1255
  • Napolitano, G., Amente, S., Castiglia, V., Gargano, B., Ruda, V., Darzacq, X., Caffeine prevents transcription inhibition and P-TEFb/7SK dissociation following UV-induced DNA damage (2010) PLoS ONE., 5
  • Napolitano, G., Varrone, F., Majello, B., Lania, L., Activation of P-TEFb induces p21 leading to cell cycle arrest (2007) Cell Cycle., 6, pp. 1126-1129
  • Rockx, D.A., Mason, R., Van Hoffen, A., Barton, M.C., Citterio, E., Bregman, D.B., UV-induced inhibition of transcription involves repression of transcription initiation and phosphorylation of RNA polymerase II (2000) Proc. Natl. Acad. Sci. U. S. A., 97, pp. 10503-10508
  • Proietti-De-Santis, L., Drane, P., Egly, J.M., Cockayne syndrome B protein regulates the transcriptional program after UV irradiation (2006) EMBO J., 25, pp. 1915-1923
  • Mone, M.J., Volker, M., Nikaido, O., Mullenders, L.H., Van Zeeland, A.A., Verschure, P.J., Local UV-induced DNA damage in cell nuclei results in local transcription inhibition (2001) EMBO Rep., 2, pp. 1013-1017
  • Pankotai, T., Bonhomme, C., Chen, D., Soutoglou, E., DNAPKcs-dependent arrest of RNA polymerase II transcription in the presence of DNA breaks (2012) Nat. Struct. Mol. Biol., 19, pp. 276-282
  • Shanbhag, N.M., Rafalska-Metcalf, I.U., Balane-Bolivar, C., Janicki, S.M., Greenberg, R.A., ATM-dependent chromatin changes silence transcription in cis to DNA double-strand breaks (2010) Cell, 141, pp. 970-981
  • Ui, A., Nagaura, Y., Yasui, A., Transcriptional elongation factor ENL phosphorylated by ATM recruits polycomb and switches off transcription for DSB repair (2015) Mol. Cell., 58, pp. 468-482
  • Medema, R.H., Macurek, L., Checkpoint control and cancer (2012) Oncogene., 31, pp. 2601-2613
  • Janssens, S., Tschopp, J., Signals from within: The DNA-damage-induced NF-kappaB response (2006) Cell Death Differ., 13, pp. 773-784
  • Van Oosterwijk, M.F., Versteeg, A., Filon, R., Van Zeeland, A.A., Mullenders, L.H., The sensitivity of Cockayne's syndrome cells to DNA-damaging agents is not due to defective transcription-coupled repair of active genes (1996) Mol. Cell. Biol., 16, pp. 4436-4444
  • McKay, B.C., Stubbert, L.J., Fowler, C.C., Smith, J.M., Cardamore, R.A., Spronck, J.C., Regulation of ultraviolet light-induced gene expression by gene size (2004) Proc. Natl. Acad. Sci. U. S. A., 101, pp. 6582-6586
  • Shandilya, J., Wang, Y., Roberts, S.G., TFIIB dephosphorylation links transcription inhibition with the p53-dependent DNA damage response (2012) Proc. Natl. Acad. Sci. U. S. A., 109, pp. 18797-18802
  • Gomes, N.P., Bjerke, G., Llorente, B., Szostek, S.A., Emerson, B.M., Espinosa, J.M., Gene-specific requirement for P-TEFb activity and RNA polymerase II phosphorylation within the p53 transcriptional program (2006) Genes Dev., 20, pp. 601-612
  • Cevher, M.A., Kleiman, F.E., Connections between 3'-end processing and DNA damage response (2010) Wiley Interdiscip. Rev. RNA., 1, pp. 193-199
  • Kleiman, F.E., Manley, J.L., The BARD1-CstF-50 interaction links mRNA 3' end formation to DNA damage and tumor suppression (2001) Cell, 104, pp. 743-753
  • Nazeer, F.I., Devany, E., Mohammed, S., Fonseca, D., Akukwe, B., Taveras, C., P53 inhibits mRNA 3' processing through its interaction with the CstF/BARD1 complex (2011) Oncogene., 30, pp. 3073-3083
  • Ramachandran, S., Tran, D.D., Klebba-Faerber, S., Kardinal, C., Whetton, A.D., Tamura, T., An ataxia-telangiectasia-mutated (ATM) kinase mediated response to DNA damage down-regulates the mRNA-binding potential of THOC5 (2011) RNA., 17, pp. 1957-1966
  • Lu, X., De La Pena, L., Barker, C., Camphausen, K., Tofilon, P.J., Radiation-induced changes in gene expression involve recruitment of existing messenger RNAs to and away from polysomes (2006) Cancer Res., 66, pp. 1052-1061
  • Braunstein, S., Badura, M.L., Xi, Q., Formenti, S.C., Schneider, R.J., Regulation of protein synthesis by ionizing radiation (2009) Mol. Cell. Biol., 29, pp. 5645-5656
  • Von Stechow, L., Typas, D., Carreras Puigvert, J., Oort, L., Siddappa, R., Pines, A., The E3 ubiquitin ligase ARIH1 protects against genotoxic stress by initiating a 4EHP-mediated mRNA translation arrest (2015) Mol. Cell. Biol., 35, pp. 1254-1268
  • Barreau, C., Paillard, L., Osborne, H.B., AU-rich elements and associated factors: Are there unifying principles? (2005) Nucleic Acids Res., 33, pp. 7138-7150
  • Gorospe, M., HuR in the mammalian genotoxic response: Post-transcriptional multitasking (2003) Cell Cycle., 2, pp. 412-414
  • Zhang, J., Chen, X., Posttranscriptional regulation of p53 and its targets by RNA-binding proteins (2008) Curr. Mol. Med., 8, pp. 845-849
  • Carrier, F., Gatignol, A., Hollander, M.C., Jeang, K.T., Fornace, A.J., Jr., Induction of RNA-binding proteins in mammalian cells by DNA-damaging agents (1994) Proc. Natl. Acad. Sci. U. S. A., 91, pp. 1554-1558
  • Jackman, J., Alamo, I., Jr., Fornace, A.J., Jr., Genotoxic stress confers preferential and coordinate messenger RNA stability on the five gadd genes (1994) Cancer Res., 54, pp. 5656-5662
  • Salvador, J.M., Brown-Clay, J.D., Fornace, A.J., Jr., Gadd45 in stress signaling, cell cycle control, and apoptosis (2013) Adv. Exp. Med. Biol., 793, pp. 1-19
  • Lal, A., Abdelmohsen, K., Pullmann, R., Kawai, T., Galban, S., Yang, X., Posttranscriptional derepression of GADD45alpha by genotoxic stress (2006) Mol. Cell., 22, pp. 117-128
  • Reinhardt, H.C., Hasskamp, P., Schmedding, I., Morandell, S., Van Vugt, M.A., Wang, X., DNA damage activates a spatially distinct late cytoplasmic cell-cycle checkpoint network controlled by MK2-mediated RNA stabilization (2010) Mol. Cell., 40, pp. 34-49
  • Andrysik, Z., Kim, J., Tan, A.C., Espinosa, J.M., A genetic screen identifies TCF3/E2A and TRIAP1 as pathway-specific regulators of the cellular response to p53 activation (2013) Cell Rep., 3, pp. 1346-1354
  • Kim, H.S., Kuwano, Y., Zhan, M., Pullmann, R., Jr., Mazan-Mamczarz, K., Li, H., Elucidation of a C-rich signature motif in target mRNAs of RNA-binding protein TIAR (2007) Mol. Cell. Biol., 27, pp. 6806-6817
  • Lal, A., Mazan-Mamczarz, K., Kawai, T., Yang, X., Martindale, J.L., Gorospe, M., Concurrent versus individual binding of HuR and AUF1 to common labile target mRNAs (2004) EMBO J., 23, pp. 3092-3102
  • Lafarga, V., Cuadrado, A., Lopez De Silanes, I., Bengoechea, R., Fernandez-Capetillo, O., Nebreda, A.R., P38 Mitogen-activated protein kinase and HuR-dependent stabilization of p21(Cip1) mRNA mediates the G(1)/S checkpoint (2009) Mol. Cell. Biol., 29, pp. 4341-4351
  • Cho, S.J., Zhang, J., Chen, X., RNPC1 modulates the RNA-binding activity of, and cooperates with, HuR to regulate p21 mRNA stability (2010) Nucleic Acids Res., 38, pp. 2256-2267
  • Zhu, J., Chen, X., MCG10, a novel p53 target gene that encodes a KH domain RNA-binding protein, is capable of inducing apoptosis and cell cycle arrest in G(2)-M (2000) Mol. Cell. Biol., 20, pp. 5602-5618
  • Scoumanne, A., Cho, S.J., Zhang, J., Chen, X., The cyclin-dependent kinase inhibitor p21 is regulated by RNA-binding protein PCBP4 via mRNA stability (2011) Nucleic Acids Res., 39, pp. 213-224
  • Mazan-Mamczarz, K., Galban, S., Lopez De Silanes, I., Martindale, J.L., Atasoy, U., Keene, J.D., RNA-binding protein HuR enhances p53 translation in response to ultraviolet light irradiation (2003) Proc. Natl. Acad. Sci. U. S. A., 100, pp. 8354-8359
  • Zhang, J., Cho, S.J., Shu, L., Yan, W., Guerrero, T., Kent, M., Translational repression of p53 by RNPC1, a p53 target overexpressed in lymphomas (2011) Genes Dev., 25, pp. 1528-1543
  • Jackson, R.S., 2nd, Cho, Y.J., Liang, P., TIS11D is a candidate pro-apoptotic p53 target gene (2006) Cell Cycle., 5, pp. 2889-2893
  • Rouault, J.P., Falette, N., Guehenneux, F., Guillot, C., Rimokh, R., Wang, Q., Identification of BTG2, an antiproliferative p53-dependent component of the DNA damage cellular response pathway (1996) Nat. Genet., 14, pp. 482-486
  • Mauxion, F., Faux, C., Seraphin, B., The BTG2 protein is a general activator of mRNA deadenylation (2008) EMBO J., 27, pp. 1039-1048
  • Wahl, M.C., Will, C.L., Luhrmann, R., The spliceosome: Design principles of a dynamic RNP machine (2009) Cell., 136, pp. 701-718
  • Kornblihtt, A.R., Schor, I.E., Allo, M., Dujardin, G., Petrillo, E., Munoz, M.J., Alternative splicing: A pivotal step between eukaryotic transcription and translation (2013) Nat. Rev. Mol. Cell Biol.
  • Luco, R.F., Allo, M., Schor, I.E., Kornblihtt, A.R., Misteli, T., Epigenetics in alternative pre-mRNA splicing (2011) Cell., 144, pp. 16-26
  • Moreno, N.N., Giono, L.E., Cambindo Botto, A.E., Munoz, M.J., Kornblihtt, A.R., Chromatin, DNA structure and alternative splicing (2015) FEBS Lett., 589, pp. 3370-3378
  • Munoz, M.J., Perez Santangelo, M.S., Paronetto, M.P., De La Mata, M., Pelisch, F., Boireau, S., DNA damage regulates alternative splicing through inhibition of RNA polymerase II elongation (2009) Cell., 137, pp. 708-720
  • Fidaleo, M., Svetoni, F., Volpe, E., Minana, B., Caporossi, D., Paronetto, M.P., Genotoxic stress inhibits Ewing sarcoma cell growth by modulating alternative pre-mRNA processing of the RNA helicase DHX9 (2015) Oncotarget., 6, pp. 31740-31757
  • Solier, S., Barb, J., Zeeberg, B.R., Varma, S., Ryan, M.C., Kohn, K.W., Genome-wide analysis of novel splice variants induced by topoisomerase i poisoning shows preferential occurrence in genes encoding splicing factors (2010) Cancer Res., 70, pp. 8055-8065
  • Dujardin, G., Lafaille, C., De La Mata, M., Marasco, L.E., Munoz, M.J., Le Jossic-Corcos, C., How slow RNA polymerase II elongation favors alternative exon skipping (2014) Mol. Cell., 54, pp. 683-690
  • Ip, J.Y., Schmidt, D., Pan, Q., Ramani, A.K., Fraser, A.G., Odom, D.T., Global impact of RNA polymerase II elongation inhibition on alternative splicing regulation (2011) Genome Res., 21, pp. 390-401
  • Sprung, C.N., Li, J., Hovan, D., McKay, M.J., Forrester, H.B., Alternative transcript initiation and splicing as a response to DNA damage (2011) PLoS ONE., 6
  • Tresini, M., Warmerdam, D.O., Kolovos, P., Snijder, L., Vrouwe, M.G., Demmers, J.A., The core spliceosome as target and effector of non-canonical ATM signalling (2015) Nature., 523, pp. 53-58
  • Sordet, O., Redon, C.E., Guirouilh-Barbat, J., Smith, S., Solier, S., Douarre, C., Ataxia telangiectasia mutated activation by transcription- and topoisomerase I-induced DNA double-strand breaks (2009) EMBO Rep., 10, pp. 887-893
  • Schwerk, C., Schulze-Osthoff, K., Regulation of apoptosis by alternative pre-mRNA splicing (2005) Mol. Cell., 19, pp. 1-13
  • Moore, M.J., Wang, Q., Kennedy, C.J., Silver, P.A., An alternative splicing network links cell-cycle control to apoptosis (2010) Cell., 142, pp. 625-636
  • Shkreta, L., Froehlich, U., Paquet, E.R., Toutant, J., Elela, S.A., Chabot, B., Anticancer drugs affect the alternative splicing of Bcl-x and other human apoptotic genes (2008) Mol. Cancer Ther., 7, pp. 1398-1409
  • Shkreta, L., Michelle, L., Toutant, J., Tremblay, M.L., Chabot, B., The DNA damage response pathway regulates the alternative splicing of the apoptotic mediator Bcl-x (2011) J. Biol. Chem., 286, pp. 331-340
  • Chandler, D.S., Singh, R.K., Caldwell, L.C., Bitler, J.L., Lozano, G., Genotoxic stress induces coordinately regulated alternative splicing of the p53 modulators MDM2 and MDM4 (2006) Cancer Res., 66, pp. 9502-9508
  • Jacob, A.G., Singh, R.K., Comiskey, D.F., Jr., Rouhier, M.F., Mohammad, F., Bebee, T.W., Stress-induced alternative splice forms of MDM2 and MDMX modulate the p53-pathway in distinct ways (2014) PLoS ONE., 9
  • Dutertre, M., Sanchez, G., De Cian, M.C., Barbier, J., Dardenne, E., Gratadou, L., Cotranscriptional exon skipping in the genotoxic stress response (2010) Nat. Struct. Mol. Biol., 17, pp. 1358-1366
  • Lents, N.H., Wheeler, L.W., Baldassare, J.J., Dynlacht, B.D., Identification and characterization of a novel Mdm2 splice variant acutely induced by the chemotherapeutic agents adriamycin and actinomycin D (2008) Cell Cycle., 7, pp. 1580-1586
  • Nicholls, C.D., Beattie, T.L., Multiple factors influence the normal and UV-inducible alternative splicing of PIG3 (1779) Biochim. Biophys. Acta., 2008, pp. 838-849
  • Filippov, V., Schmidt, E.L., Filippova, M., Duerksen-Hughes, P.J., Splicing and splice factor SRp55 participate in the response to DNA damage by changing isoform ratios of target genes (2008) Gene., 420, pp. 34-41
  • Twyffels, L., Gueydan, C., Kruys, V., Shuttling SR proteins: More than splicing factors (2011) FEBS J., 278, pp. 3246-3255
  • Zhong, X.Y., Wang, P., Han, J., Rosenfeld, M.G., Fu, X.D., SR proteins in vertical integration of gene expression from transcription to RNA processing to translation (2009) Mol. Cell., 35, pp. 1-10
  • Wu, H., Sun, S., Tu, K., Gao, Y., Xie, B., Krainer, A.R., A splicing-independent function of SF2/ASF in microRNA processing (2010) Mol. Cell., 38, pp. 67-77
  • Han, S.P., Tang, Y.H., Smith, R., Functional diversity of the hnRNPs: Past, present and perspectives (2010) Biochem. J., 430, pp. 379-392
  • Matsuoka, S., Ballif, B.A., Smogorzewska, A., McDonald, E.R., 3rd, Hurov, K.E., Luo, J., ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage (2007) Science., 316, pp. 1160-1166
  • Bensimon, A., Schmidt, A., Ziv, Y., Elkon, R., Wang, S.Y., Chen, D.J., ATM-dependent and -independent dynamics of the nuclear phosphoproteome after DNA damage (2010) Sci. Signal., 3
  • Bennetzen, M.V., Larsen, D.H., Bunkenborg, J., Bartek, J., Lukas, J., Andersen, J.S., Site-specific phosphorylation dynamics of the nuclear proteome during the DNA damage response (2010) Mol. Cell. Proteomics., 9, pp. 1314-1323
  • Hurov, K.E., Cotta-Ramusino, C., Elledge, S.J., A genetic screen identifies the triple T complex required for DNA damage signaling and ATM and ATR stability (2010) Genes Dev., 24, pp. 1939-1950
  • Paulsen, R.D., Soni, D.V., Wollman, R., Hahn, A.T., Yee, M.C., Guan, A., A genome-wide siRNA screen reveals diverse cellular processes and pathways that mediate genome stability (2009) Mol. Cell., 35, pp. 228-239
  • Shkreta, L., Chabot, B., The RNA splicing response to DNA damage (2015) Biomolecules, 5, pp. 2935-2977
  • Zaccara, S., Tebaldi, T., Pederiva, C., Ciribilli, Y., Bisio, A., Inga, A., P53-directed translational control can shape and expand the universe of p53 target genes (2014) Cell Death Differ., 21, pp. 1522-1534
  • Polager, S., Ginsberg, D., E2F - At the crossroads of life and death (2008) Trends Cell Biol., 18, pp. 528-535
  • Li, Z., Kreutzer, M., Mikkat, S., Mise, N., Glocker, M.O., Putzer, B.M., Proteomic analysis of the E2F1 response in p53-negative cancer cells: New aspects in the regulation of cell survival and death (2006) Proteomics., 6, pp. 5735-5745
  • Merdzhanova, G., Edmond, V., De Seranno, S., Van Den Broeck, A., Corcos, L., Brambilla, C., E2F1 controls alternative splicing pattern of genes involved in apoptosis through upregulation of the splicing factor SC35 (2008) Cell Death Differ., 15, pp. 1815-1823
  • Edmond, V., Moysan, E., Khochbin, S., Matthias, P., Brambilla, C., Brambilla, E., Acetylation and phosphorylation of SRSF2 control cell fate decision in response to cisplatin (2011) EMBO J., 30, pp. 510-523
  • Heyd, F., Lynch, K.W., Degrade, move, regroup: Signaling control of splicing proteins (2011) Trends Biochem. Sci., 36, pp. 397-404
  • Shomron, N., Alberstein, M., Reznik, M., Ast, G., Stress alters the subcellular distribution of hSlu7 and thus modulates alternative splicing (2005) J. Cell Sci., 118, pp. 1151-1159
  • Van Der Houven Van Oordt, W., Diaz-Meco, M.T., Lozano, J., Krainer, A.R., Moscat, J., Caceres, J.F., The MKK(3/6)-p38-signaling cascade alters the subcellular distribution of hnRNP A1 and modulates alternative splicing regulation (2000) J. Cell Biol., 149, pp. 307-316
  • Paronetto, M.P., Minana, B., Valcarcel, J., The Ewing sarcoma protein regulates DNA damage-induced alternative splicing (2011) Mol. Cell., 43, pp. 353-368
  • Gardiner, M., Toth, R., Vandermoere, F., Morrice, N.A., Rouse, J., Identification and characterization of FUS/TLS as a new target of ATM (2008) Biochem. J., 415, pp. 297-307
  • Lagier-Tourenne, C., Polymenidou, M., Cleveland, D.W., TDP-43 and FUS/TLS: Emerging roles in RNA processing and neurodegeneration (2010) Hum. Mol. Genet., 19, pp. R46-R64
  • Busa, R., Geremia, R., Sette, C., Genotoxic stress causes the accumulation of the splicing regulator Sam68 in nuclear foci of transcriptionally active chromatin (2010) Nucleic Acids Res., 38, pp. 3005-3018
  • Sakashita, E., Endo, H., SR and SR-related proteins redistribute to segregated fibrillar components of nucleoli in a response to DNA damage (2010) Nucleus., 1, pp. 367-380
  • Haley, B., Paunesku, T., Protic, M., Woloschak, G.E., Response of heterogeneous ribonuclear proteins (hnRNP) to ionising radiation and their involvement in DNA damage repair (2009) Int. J. Radiat. Biol., 85, pp. 643-655
  • Jen, K.Y., Cheung, V.G., Transcriptional response of lymphoblastoid cells to ionizing radiation (2003) Genome Res., 13, pp. 2092-2100
  • Khodarev, N.N., Park, J.O., Yu, J., Gupta, N., Nodzenski, E., Roizman, B., Dose-dependent and independent temporal patterns of gene responses to ionizing radiation in normal and tumor cells and tumor xenografts (2001) Proc. Natl. Acad. Sci. U. S. A., 98, pp. 12665-12670
  • Yim, E.K., Lee, K.H., Kim, C.J., Park, J.S., Analysis of differential protein expression by cisplatin treatment in cervical carcinoma cells (2006) Int. J. Gynecol. Cancer, 16, pp. 690-697
  • Gamble, S.C., Dunn, M.J., Wheeler, C.H., Joiner, M.C., Adu-Poku, A., Arrand, J.E., Expression of proteins coincident with inducible radioprotection in human lung epithelial cells (2000) Cancer Res., 60, pp. 2146-2151
  • Takao, J., Ariizumi, K., Dougherty, I.I., Cruz, P.D., Jr., Genomic scale analysis of the human keratinocyte response to broad-band ultraviolet-B irradiation (2002) Photodermatol. Photoimmunol. Photomed., 18, pp. 5-13
  • Moumen, A., Masterson, P., O'Connor, M.J., Jackson, S.P., HnRNP K: An HDM2 target and transcriptional coactivator of p53 in response to DNA damage (2005) Cell., 123, pp. 1065-1078
  • Pelisch, F., Pozzi, B., Risso, G., Munoz, M.J., Srebrow, A., DNA damage-induced heterogeneous nuclear ribonucleoprotein K sumoylation regulates p53 transcriptional activation (2012) J. Biol. Chem., 287, pp. 30789-30799
  • Lee, S.W., Lee, M.H., Park, J.H., Kang, S.H., Yoo, H.M., Ka, S.H., SUMOylation of hnRNP-K is required for p53-mediated cell-cycle arrest in response to DNA damage (2012) EMBO J., 31, pp. 4441-4452
  • Consortium, E.P., Birney, E., Stamatoyannopoulos, J.A., Dutta, A., Guigo, R., Gingeras, T.R., Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project (2007) Nature, 447, pp. 799-816
  • Castel, S.E., Martienssen, R.A., RNA interference in the nucleus: Roles for small RNAs in transcription, epigenetics and beyond (2013) Nat. Rev. Genet., 14, pp. 100-112
  • Krol, J., Loedige, I., Filipowicz, W., The widespread regulation of microRNA biogenesis, function and decay (2010) Nat. Rev. Genet., 11, pp. 597-610
  • Wang, Y., Taniguchi, T., MicroRNAs and DNA damage response: Implications for cancer therapy (2013) Cell Cycle., 12, pp. 32-42
  • Mao, A., Liu, Y., Zhang, H., Di, C., Sun, C., MicroRNA expression and biogenesis in cellular response to ionizing radiation (2014) DNA Cell Biol., 33, pp. 667-679
  • Hermeking, H., P53 enters the microRNA world (2007) Cancer Cell., 12, pp. 414-418
  • Feng, Z., Zhang, C., Wu, R., Hu, W., Tumor suppressor p53 meets microRNAs (2011) J. Mol. Cell Biol., 3, pp. 44-50
  • Suzuki, H.I., Yamagata, K., Sugimoto, K., Iwamoto, T., Kato, S., Miyazono, K., Modulation of microRNA processing by p53 (2009) Nature., 460, pp. 529-533
  • Zhang, X., Wan, G., Berger, F.G., He, X., Lu, X., The ATM kinase induces microRNA biogenesis in the DNA damage response (2011) Mol. Cell., 41, pp. 371-383
  • Martin, N.T., Nakamura, K., Davies, R., Nahas, S.A., Brown, C., Tunuguntla, R., ATM-dependent MiR-335 targets CtIP and modulates the DNA damage response (2013) PLoS Genet., 9
  • Kawai, S., Amano, A., BRCA1 regulates microRNA biogenesis via the DROSHA microprocessor complex (2012) J. Cell Biol., 197, pp. 201-208
  • Pothof, J., Verkaik, N.S., Van, I.W., Wiemer, E.A., Ta, V.T., Der Horst, G.T.V., MicroRNA-mediated gene silencing modulates the UV-induced DNA-damage response (2009) EMBO J., 28, pp. 2090-2099
  • Leung, A.K., Sharp, P.A., MicroRNA functions in stress responses (2010) Mol. Cell., 40, pp. 205-215
  • Francia, S., Michelini, F., Saxena, A., Tang, D., De Hoon, M., Anelli, V., Site-specific DICER and DROSHA RNA products control the DNA-damage response (2012) Nature., 488, pp. 231-235
  • Wang, X., Arai, S., Song, X., Reichart, D., Du, K., Pascual, G., Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription (2008) Nature., 454, pp. 126-130
  • Huarte, M., Guttman, M., Feldser, D., Garber, M., Koziol, M.J., Kenzelmann-Broz, D., A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response (2010) Cell., 142, pp. 409-419
  • Hung, T., Wang, Y., Lin, M.F., Koegel, A.K., Kotake, Y., Grant, G.D., Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters (2011) Nat. Genet., 43, pp. 621-629
  • Wan, G., Mathur, R., Hu, X., Liu, Y., Zhang, X., Peng, G., Long non-coding RNA ANRIL (CDKN2B-AS) is induced by the ATM-E2F1 signaling pathway (2013) Cell. Signal., 25, pp. 1086-1095
  • Yap, K.L., Li, S., Munoz-Cabello, A.M., Raguz, S., Zeng, L., Mujtaba, S., Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a (2010) Mol. Cell., 38, pp. 662-674
  • Sharma, V., Misteli, T., Non-coding RNAs in DNA damage and repair (2013) FEBS Lett., 587, pp. 1832-1839
  • Zhang, C., Peng, G., Non-coding RNAs: An emerging player in DNA damage response (2015) Mutat. Res. Rev. Mutat. Res., 763, pp. 202-211
  • Eblen, S.T., Regulation of chemoresistance via alternative messenger RNA splicing (2012) Biochem. Pharmacol., 83, pp. 1063-1072
  • Bonnal, S., Vigevani, L., Valcarcel, J., The spliceosome as a target of novel antitumour drugs (2012) Nat. Rev. Drug Discov., 11, pp. 847-859
  • Havens, M.A., Duelli, D.M., Hastings, M.L., Targeting RNA splicing for disease therapy (2013) Wiley Interdiscip. Rev. RNA, 4, pp. 247-266
  • Daguenet, E., Dujardin, G., Valcarcel, J., The pathogenicity of splicing defects: Mechanistic insights into pre-mRNA processing inform novel therapeutic approaches (2015) EMBO Rep., 16, pp. 1640-1655
  • Solier, S., Lansiaux, A., Logette, E., Wu, J., Soret, J., Tazi, J., Topoisomerase i and II inhibitors control caspase-2 pre-messenger RNA splicing in human cells (2004) Mol. Cancer Res., 2, pp. 53-61
  • Takai, K., Sakamoto, S., Sakai, T., Yasunaga, J., Komatsu, K., Matsuoka, M., A potential link between alternative splicing of the NBS1 gene and DNA damage/environmental stress (2008) Radiat. Res., 170, pp. 33-40
  • Palve, V.C., Teni, T.R., Association of anti-apoptotic Mcl-1 L isoform expression with radioresistance of oral squamous carcinoma cells (2012) Radiat. Oncol., 7, p. 135
  • Leva, V., Giuliano, S., Bardoni, A., Camerini, S., Crescenzi, M., Lisa, A., Phosphorylation of SRSF1 is modulated by replicational stress (2012) Nucleic Acids Res., 40, pp. 1106-1117
  • Filippov, V., Filippova, M., Duerksen-Hughes, P.J., The early response to DNA damage can lead to activation of alternative splicing activity resulting in CD44 splice pattern changes (2007) Cancer Res., 67, pp. 7621-7630
  • Chen, Z., Shin, M.H., Moon, Y.J., Lee, S.R., Kim, Y.K., Seo, J.E., Modulation of elastin exon 26 A mRNA and protein expression in human skin in vivo (2009) Exp. Dermatol., 18, pp. 378-386
  • Pisarchik, A., Slominski, A.T., Alternative splicing of CRH-R1 receptors in human and mouse skin: Identification of new variants and their differential expression (2001) FASEB J., 15, pp. 2754-2756
  • Menendez, D., Nguyen, T.A., Freudenberg, J.M., Mathew, V.J., Anderson, C.W., Jothi, R., Diverse stresses dramatically alter genome-wide p53 binding and transactivation landscape in human cancer cells (2013) Nucleic Acids Res., 41, pp. 7286-7301
  • Vilborg, A., Bersani, C., Wilhelm, M.T., Wiman, K.G., The p53 target Wig-1: A regulator of mRNA stability and stem cell fate? (2011) Cell Death Differ., 18, pp. 1434-1440
  • Lu, X., Legerski, R.J., The Prp19/Pso4 core complex undergoes ubiquitylation and structural alterations in response to DNA damage (2007) Biochem. Biophys. Res. Commun., 354, pp. 968-974
  • Ha, K., Takeda, Y., Dynan, W.S., Sequences in PSF/SFPQ mediate radioresistance and recruitment of PSF/SFPQ-containing complexes to DNA damage sites in human cells (2011) DNA Repair (Amst), 10, pp. 252-259
  • Beli, P., Lukashchuk, N., Wagner, S.A., Weinert, B.T., Olsen, J.V., Baskcomb, L., Proteomic investigations reveal a role for RNA processing factor THRAP3 in the DNA damage response (2012) Mol. Cell., 46, pp. 212-225
  • Shu, L., Yan, W., Chen, X., RNPC1, an RNA-binding protein and a target of the p53 family, is required for maintaining the stability of the basal and stress-induced p21 transcript (2006) Genes Dev., 20, pp. 2961-2972
  • Vivarelli, S., Lenzken, S.C., Ruepp, M.D., Ranzini, F., Maffioletti, A., Alvarez, R., Paraquat modulates alternative pre-mRNA splicing by modifying the intracellular distribution of SRPK2 (2013) PLoS ONE., 8

Citas:

---------- APA ----------
Giono, L.E., Nieto Moreno, N., Cambindo Botto, A.E., Dujardin, G., Muñoz, M.J. & Kornblihtt, A.R. (2016) . The RNA Response to DNA Damage. Journal of Molecular Biology, 428(12), 2636-2651.
http://dx.doi.org/10.1016/j.jmb.2016.03.004
---------- CHICAGO ----------
Giono, L.E., Nieto Moreno, N., Cambindo Botto, A.E., Dujardin, G., Muñoz, M.J., Kornblihtt, A.R. "The RNA Response to DNA Damage" . Journal of Molecular Biology 428, no. 12 (2016) : 2636-2651.
http://dx.doi.org/10.1016/j.jmb.2016.03.004
---------- MLA ----------
Giono, L.E., Nieto Moreno, N., Cambindo Botto, A.E., Dujardin, G., Muñoz, M.J., Kornblihtt, A.R. "The RNA Response to DNA Damage" . Journal of Molecular Biology, vol. 428, no. 12, 2016, pp. 2636-2651.
http://dx.doi.org/10.1016/j.jmb.2016.03.004
---------- VANCOUVER ----------
Giono, L.E., Nieto Moreno, N., Cambindo Botto, A.E., Dujardin, G., Muñoz, M.J., Kornblihtt, A.R. The RNA Response to DNA Damage. J. Mol. Biol. 2016;428(12):2636-2651.
http://dx.doi.org/10.1016/j.jmb.2016.03.004