Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The ankyrin repeat (AR) domain of IκBα consists of a cooperative folding unit of roughly four ARs (AR1-AR4) and of two weakly folded repeats (AR5 and AR6). The kinetic folding mechanism of the cooperative subdomain, IκBα 67-206, was analyzed using rapid mixing techniques. Despite its apparent architectural simplicity, IκBα 67-206 displays complex folding kinetics, with two sequential on-pathway high-energy intermediates. The effect of mutations to or away from the consensus sequences of ARs on folding behavior was analyzed, particularly the GXTPLHLA motif, which have not been examined in detail previously. Mutations toward the consensus generally resulted in an increase in folding stability, whereas mutations away from the consensus resulted in decreased overall stability. We determined the free energy change upon mutation for three sequential transition state ensembles along the folding route for 16 mutants. We show that folding initiates with the formation of the interface of the outer helices of AR3 and AR4, and then proceeds to consolidate structure in these repeats. Subsequently, AR1 and AR2 fold in a concerted way in a single kinetic step. We show that this mechanism is robust to the presence of AR5 and AR6 as they do not strongly affect the folding kinetics. Overall, the protein appears to fold on a rather smooth energy landscape, where the folding mechanism conforms a one-dimensional approximation. However, we note that the AR does not necessarily act as a single folding element. © 2011 Elsevier Ltd.

Registro:

Documento: Artículo
Título:Folding kinetics of the cooperatively folded subdomain of the IκBα ankyrin repeat domain
Autor:Devries, I.; Ferreiro, D.U.; Sánchez, I.E.; Komives, E.A.
Filiación:Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, San Diego, CA 92093-0378, United States
Protein Physiology Laboratory, Departamento de Quimica Biologica, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
Consejo Nacional de Investigaciones Cientificas, Tecnicas de Argentina, C1428EGA Buenos Aires, Argentina
Palabras clave:α value; folding landscapeNFκB; protein folding; repeat protein; ankyrin; ankyrin 1; ankyrin 2; ankyrin 3; ankyrin 4; ankyrin 5; ankyrin 6; I kappa B alpha; mutant protein; unclassified drug; article; gene deletion; gene mutation; human; kinetics; priority journal; protein analysis; protein folding; protein stability; temperature; Amino Acid Sequence; Ankyrin Repeat; Ankyrins; Consensus Sequence; Humans; I-kappa B Proteins; Kinetics; Models, Molecular; Molecular Sequence Data; Mutation; Protein Folding; Sequence Homology, Amino Acid
Año:2011
Volumen:408
Número:1
Página de inicio:163
Página de fin:176
DOI: http://dx.doi.org/10.1016/j.jmb.2011.02.021
Título revista:Journal of Molecular Biology
Título revista abreviado:J. Mol. Biol.
ISSN:00222836
CODEN:JMOBA
CAS:I kappa B alpha, 151217-48-0; Ankyrins; I-kappa B Proteins
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00222836_v408_n1_p163_Devries

Referencias:

  • Baeuerle, P.A., Baltimore, D., IκB: A specific inhibitor of the NF-κB transcription factor (1988) Science, 242 (4878), pp. 540-546
  • Croy, C.H., Bergqvist, S., Huxford, T., Ghosh, G., Komives, E.A., Biophysical characterization of the free IκBα ankyrin repeat domain in solution (2004) Protein Science, 13 (7), pp. 1767-1777. , DOI 10.1110/ps.04731004
  • Truhlar, S.M.E., Torpey, J.W., Komives, E.A., Regions of IκBα that are critical for its inhibition of NF-κB·DNA interaction fold upon binding to NF-κB (2006) Proceedings of the National Academy of Sciences of the United States of America, 103 (50), pp. 18951-18956. , http://www.pnas.org/cgi/reprint/103/50/18951, DOI 10.1073/pnas.0605794103
  • Ferreiro, D.U., Cervantes, C.F., Truhlar, S.M., Cho, S.S., Wolynes, P.G., Komives, E.A., Stabilizing IκBα by "consensus" design (2007) J. Mol. Biol., 365, pp. 1201-1216
  • Ferreiro, D.U., Cho, S.S., Komives, E.A., Wolynes, P.G., The energy landscape of modular repeat proteins: Topology determines folding mechanism in the ankyrin family (2005) Journal of Molecular Biology, 354 (3), pp. 679-692. , DOI 10.1016/j.jmb.2005.09.078, PII S0022283605011605
  • Ferreiro, D.U., Wolynes, P.G., The capillarity picture and the kinetics of one-dimensional protein folding (2008) Proc. Natl Acad. Sci. USA, 105, pp. 9853-9854
  • Werbeck, N.D., Itzhaki, L.S., Probing a moving target with a plastic unfolding intermediate of an ankyrin-repeat protein (2007) Proceedings of the National Academy of Sciences of the United States of America, 104 (19), pp. 7863-7868. , DOI 10.1073/pnas.0610315104
  • Bradley, C.M., Barrick, D., Limits of cooperativity in a structurally modular protein: Response of the Notch ankyrin domain to analogous alanine substitutions in each repeat (2002) Journal of Molecular Biology, 324 (2), pp. 373-386. , DOI 10.1016/S0022-2836(02)00945-2
  • Bradley, C.M., Barrick, D., The Notch Ankyrin Domain Folds via a Discrete, Centralized Pathway (2006) Structure, 14 (8), pp. 1303-1312. , DOI 10.1016/j.str.2006.06.013, PII S0969212606002966
  • Werbeck, N.D., Rowling, P.J., Chellamuthu, V.R., Itzhaki, L.S., Shifting transition states in the unfolding of a large ankyrin repeat protein (2008) Proc. Natl Acad. Sci. USA, 105, pp. 9982-9987
  • Tang, K.S., Fersht, A.R., Itzhaki, L.S., Sequential unfolding of ankyrin repeats in tumor suppressor p16 (2003) Structure, 11 (1), pp. 67-73. , DOI 10.1016/S0969-2126(02)00929-2, PII S0969212602009292
  • Lowe, A.R., Itzhak, L.S., Rational redesign of the folding pathway of a modular protein (2007) Proceedings of the National Academy of Sciences of the United States of America, 104 (8), pp. 2679-2684. , DOI 10.1073/pnas.0604653104
  • Zeeb, M., Rosner, H., Zeslawski, W., Canet, D., Holak, T.A., Balbach, J., Protein folding and stability of human CDK inhibitor p19 INK4d (2002) Journal of Molecular Biology, 315 (3), pp. 447-457. , DOI 10.1006/jmbi.2001.5242
  • Low, C., Weininger, U., Zeeb, M., Zhang, W., Laue, E.D., Schmid, F.X., Balbach, J., Folding Mechanism of an Ankyrin Repeat Protein: Scaffold and Active Site Formation of Human CDK Inhibitor p19 INK4d (2007) Journal of Molecular Biology, 373 (1), pp. 219-231. , DOI 10.1016/j.jmb.2007.07.063, PII S0022283607010273
  • Low, C., Weininger, U., Neumann, P., Klepsch, M., Lilie, H., Stubbs, M.T., Balbach, J., Structural insights into an equilibrium folding intermediate of an archaeal ankyrin repeat protein (2008) Proceedings of the National Academy of Sciences of the United States of America, 105 (10), pp. 3779-3784. , http://www.pnas.org/cgi/reprint/105/10/3779, DOI 10.1073/pnas.0710657105
  • Michaely, P., Bennett, V., The ANK repeat: A ubiquitous motif involved in macromolecular recognition (1992) Trends Cell. Biol., 2, pp. 127-129
  • Sedgwick, S.G., Smerdon, S.J., The ankyrin repeat: A diversity of interactions on a common structural framework (1999) Trends in Biochemical Sciences, 24 (8), pp. 311-316. , DOI 10.1016/S0968-0004(99)01426-7, PII S0968000499014267
  • Mosavi, L.K., Minor Jr., D.L., Peng, Z.-Y., Consensus-derived structural determinants of the ankyrin repeat motif (2002) Proceedings of the National Academy of Sciences of the United States of America, 99 (25), pp. 16029-16034. , DOI 10.1073/pnas.252537899
  • Binz, H.K., Stumpp, M.T., Forrer, P., Amstutz, P., Pluckthun, A., Designing repeat proteins: Well-expressed, soluble and stable proteins from combinatorial libraries of consensus ankyrin repeat proteins (2003) Journal of Molecular Biology, 332 (2), pp. 489-503. , DOI 10.1016/S0022-2836(03)00896-9
  • Kohl, A., Binz, H.K., Forrer, P., Stumpp, M.T., Pluckthun, A., Grutter, M.G., Designed to be stable: Crystal structure of a consensus ankyrin repeat protein (2003) Proceedings of the National Academy of Sciences of the United States of America, 100 (4), pp. 1700-1705. , DOI 10.1073/pnas.0337680100
  • Tripp, K.W., Barrick, D., Enhancing the Stability and Folding Rate of a Repeat Protein through the Addition of Consensus Repeats (2007) Journal of Molecular Biology, 365 (4), pp. 1187-1200. , DOI 10.1016/j.jmb.2006.09.092, PII S0022283606013404
  • Jacobs, M.D., Harrison, S.C., Structure of an IκBα/NF-κB complex (1998) Cell, 95, pp. 749-758
  • Delano, W.L., (2002) The PyMOL Molecular Graphics System, , DeLano Scientific San Carlos, CA, USA
  • Barrick, D., Ferreiro, D.U., Komives, E.A., Folding landscapes of ankyrin repeat proteins: Experiments meet theory (2008) Curr. Opin. Struct. Biol., 18, pp. 27-34
  • Devi, V.S., Binz, H.K., Stumpp, M.T., Pluckthun, A., Bosshard, H.R., Jelesarov, I., Folding of a designed simple ankyrin repeat protein (2004) Protein Science, 13 (11), pp. 2864-2870. , DOI 10.1110/ps.04935704
  • Wetzel, S.K., Settanni, G., Kenig, M., Binz, H.K., Pluckthun, A., Folding and unfolding mechanism of highly stable full-consensus ankyrin repeat proteins (2008) J. Mol. Biol., 376, pp. 241-257
  • Interlandi, G., Wetzel, S.K., Settanni, G., Pluckthun, A., Caflisch, A., Characterization and Further Stabilization of Designed Ankyrin Repeat Proteins by Combining Molecular Dynamics Simulations and Experiments (2008) Journal of Molecular Biology, 375 (3), pp. 837-854. , DOI 10.1016/j.jmb.2007.09.042, PII S0022283607012223
  • Guo, Y., Yuan, C., Tian, F., Huang, K., Weghorst, C.M., Tsai, M.D., Li, J., Contributions of conserved TPLH tetrapeptides to the conformational stability of ankyrin repeat proteins (2010) J. Mol. Biol., 399, pp. 168-181
  • Huxford, T., Huang, D.-B., Malek, S., Ghosh, G., The crystal structure of the IκBα/NF-κB complex reveals mechanisms of NF-κB inactivation (1998) Cell, 95 (6), pp. 759-770. , DOI 10.1016/S0092-8674(00)81699-2
  • Kiefhaber, T., Kohler, H.H., Schmid, F.X., Kinetic coupling between protein folding and prolyl isomerization. I. Theoretical models (1992) J. Mol. Biol., 224, pp. 217-229
  • Pappenberger, G., Aygun, H., Engels, J.W., Reimer, U., Fischer, G., Kiefhaber, T., Nonprolyl cis peptide bonds in unfolded proteins cause complex folding kinetics (2001) Nature Structural Biology, 8 (5), pp. 452-458. , DOI 10.1038/87624
  • Oliveberg, M., Characterisation of the transition states for protein folding: Towards a new level of mechanistic detail in protein engineering analysis (2001) Current Opinion in Structural Biology, 11 (1), pp. 94-100. , DOI 10.1016/S0959-440X(00)00171-8
  • Mello, C.C., Bradley, C.M., Tripp, K.W., Barrick, D., Experimental characterization of the folding kinetics of the Notch ankyrin domain (2005) Journal of Molecular Biology, 352 (2), pp. 266-281. , DOI 10.1016/j.jmb.2005.07.026, PII S0022283605008144
  • Lowe, A.R., Itzhaki, L.S., Biophysical Characterisation of the Small Ankyrin Repeat Protein Myotrophin (2007) Journal of Molecular Biology, 365 (4), pp. 1245-1255. , DOI 10.1016/j.jmb.2006.10.060, PII S0022283606014409
  • Bachmann, A., Kiefhaber, T., Apparent two-state tendamistat folding is a sequential process along a defined route (2001) Journal of Molecular Biology, 306 (2), pp. 375-386. , DOI 10.1006/jmbi.2000.4399
  • Bachmann, A., Kiefhaber, T., Protocols-analytical solutions of three-state protein folding models (2005) Protein Folding Handbook: Part 1, 1, pp. 402-406
  • Sanchez, I.E., Kiefhaber, T., Evidence for sequential barriers and obligatory intermediates in apparent two-state protein folding (2003) Journal of Molecular Biology, 325 (2), pp. 367-376. , DOI 10.1016/S0022-2836(02)01230-5
  • Fersht, A.R., Matouschek, A., Serrano, L., The folding of an enzyme. I. Theory of protein engineering analysis of stability and pathway of protein folding (1992) J. Mol. Biol., 224, pp. 771-782
  • Itzhaki, L.S., Otzen, D.E., Fersht, A.R., The structure of the transition state for folding of chymotrypsin inhibitor 2 analysed by protein engineering methods: Evidence for a nucleation-condensation mechanism for protein folding (1995) J. Mol. Biol., 254, pp. 260-288
  • Tripp, K.W., Barrick, D., The tolerance of a modular protein to duplication and deletion of internal repeats (2004) Journal of Molecular Biology, 344 (1), pp. 169-178. , DOI 10.1016/j.jmb.2004.09.038, PII S0022283604011817
  • Papworth, C., Bauer, J.C., Braman, J., Wright, D.A., Site-directed mutagenesis in one day with >80% efficiency (1996) Strategies, 8, pp. 3-4
  • Truhlar, S.M., Mathes, E., Cervantes, C.F., Ghosh, G., Komives, E.A., Pre-folding IκBα alters control of NF-κB signaling (2008) J. Mol. Biol., 380, pp. 67-82
  • Street, T.O., Courtemanche, N., Barrick, D., Protein folding and stability using denaturants (2008) Methods Cell. Biol., 84, pp. 295-325
  • Pace, C.N., Determination and analysis of urea and guanidine hydrochloride denaturation curves (1986) Methods in Enzymology, 131, pp. 266-280

Citas:

---------- APA ----------
Devries, I., Ferreiro, D.U., Sánchez, I.E. & Komives, E.A. (2011) . Folding kinetics of the cooperatively folded subdomain of the IκBα ankyrin repeat domain. Journal of Molecular Biology, 408(1), 163-176.
http://dx.doi.org/10.1016/j.jmb.2011.02.021
---------- CHICAGO ----------
Devries, I., Ferreiro, D.U., Sánchez, I.E., Komives, E.A. "Folding kinetics of the cooperatively folded subdomain of the IκBα ankyrin repeat domain" . Journal of Molecular Biology 408, no. 1 (2011) : 163-176.
http://dx.doi.org/10.1016/j.jmb.2011.02.021
---------- MLA ----------
Devries, I., Ferreiro, D.U., Sánchez, I.E., Komives, E.A. "Folding kinetics of the cooperatively folded subdomain of the IκBα ankyrin repeat domain" . Journal of Molecular Biology, vol. 408, no. 1, 2011, pp. 163-176.
http://dx.doi.org/10.1016/j.jmb.2011.02.021
---------- VANCOUVER ----------
Devries, I., Ferreiro, D.U., Sánchez, I.E., Komives, E.A. Folding kinetics of the cooperatively folded subdomain of the IκBα ankyrin repeat domain. J. Mol. Biol. 2011;408(1):163-176.
http://dx.doi.org/10.1016/j.jmb.2011.02.021