Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Field-enhanced scanning optical microscopy relies on the design and fabrication of plasmonic probes which had to provide optical and chemical contrast at the nanoscale. In order to do so, the scattering containing the near-field information recorded in a field-enhanced scanning optical microscopy experiment, has to surpass the background light, always present due to multiple interferences between the macroscopic probe and sample. In this work, we show that when the probe-sample distance is modulated with very low amplitude, the higher the harmonic demodulation is, the better the ratio between the near-field signal and the interferometric background results. The choice of working at a given n harmonic is dictated by the experiment when the signal at the n + 1 harmonic goes below the experimental noise. We demonstrate that the optical contrast comes from the nth derivative of the near-field scattering, amplified by the interferometric background. By modelling the far and near field we calculate the probe-sample approach curves, which fit very well the experimental ones. After taking a great amount of experimental data for different probes and samples, we conclude with a table of the minimum enhancement factors needed to have optical contrast with field-enhanced scanning optical microscopy. © 2014 Royal Microscopical Society.

Registro:

Documento: Artículo
Título:Harmonic demodulation and minimum enhancement factors in field-enhanced near-field optical microscopy
Autor:Scarpettini, A.F.; Bragas, A.V.
Filiación:Laboratorio de Electrónica Cuántica, Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (1428), Buenos Aires, Argentina
IFIBA-CONICET-UBA (1428), Buenos Aires, Argentina
Laboratorio de Optoelectrónica y Metrología Aplicada, Facultad Regional Delta, Universidad Tecnológica Nacional, 2804 Campana, Argentina
Palabras clave:Enhancement factor; Harmonic demodulation; Scanning near-field optical microscopy; Article; field enhanced near field optical microscopy; frequency modulation; laser; mathematical analysis; mathematical computing; mathematical model; prediction; Raman spectrometry; scanning electron microscopy; signal detection; signal processing
Año:2015
Volumen:257
Número:1
Página de inicio:54
Página de fin:64
DOI: http://dx.doi.org/10.1111/jmi.12185
Título revista:Journal of Microscopy
Título revista abreviado:J. Microsc.
ISSN:00222720
CODEN:JMICA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00222720_v257_n1_p54_Scarpettini

Referencias:

  • Alonso-González, P., Albella, P., Schnell, M., Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots (2012) Nat. Commun., 3, p. 684
  • Anger, P., Bharadwaj, P., Novotny, L., Enhancement and quenching of single-molecule fluorescence (2006) Phys. Rev. Lett., 96. , 113002-1-113002-4
  • Balzarotti, F., Stefani, F.D., Plasmonics meets far-field optical nanoscopy (2012) ACS Nano., 6 (6), pp. 4580-4584
  • Barcelo, S.J., Kim, A., Wu, W., Li, Z., Fabrication of deterministic nanostructure assemblies with sub-nanometer spacing using a nanoimprinting transfer technique (2012) ACS Nano., 6 (7), pp. 6446-6452
  • Behr, N., Raschke, M.B., Optical antenna properties of scanning probe tips: plasmonic light scattering, tip-sample coupling, and near-field enhancement (2008) J. Phys. Chem. C, 112, pp. 3766-3773
  • Bohren, C.F., Huffman, D.R., (1998) Absorption and Scattering of Light by Small Particles, , John Wiley & Sons, New York
  • Bragas, A.V., Martínez, O.E., Field-enhanced scanning optical microscope (2000) Opt. Lett., 25, pp. 631-633
  • Cherukulappurath, S., Johnson, T.W., Lindquist, N.C., Oh, S.H., Template-stripped asymmetric metallic pyramids for tunable plasmonic nanofocusing (2013) Nano. Lett., 13, pp. 5635-5641
  • Chuang, C.H., Lo, Y.L., Analytical analysis of modulated signal in apertureless scanning near-field optical microscopy (2007) Opt. Express, 15 (24), pp. 15782-15796
  • Cvitkovic, A., Ocelic, N., Hillenbrand, R., Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy (2007) Opt. Express, 15 (14), pp. 8550-8565
  • De Angelis, F., Das, G., Candeloro, P., Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons (2010) Nat. Nanotech., 5, pp. 67-72
  • Draine, B.T., Lee, H.M., Optical properties of interstellar graphite and silicate grains (1984) Astrophys. J., 285, pp. 89-108
  • Eghlidi, H., Lee, K.G., Chen, X.W., Götzinger, S., Sandoghdar, V., Resolution and enhancement in nanoantenna-based fluorescence microscopy (2009) Nano. Lett., 9 (12), pp. 4007-4011
  • Encina, E.R., Coronado, E.A., Plasmon coupling in silver nanosphere pairs (2010) J. Phys. Chem. C, 114, pp. 3918-3923
  • Encina, E.R., Perassi, E.M., Coronado, E.A., Near-field enhancement of multipole plasmon resonances in Ag and Au nanowires (2009) J. Phys. Chem. A, 113, pp. 4489-4497
  • Esteban, R., Borisov, A.G., Nordlander, P., Aizpurua, J., Bridging quantum and classical plasmonics with a quantum-corrected model (2012) Nat. Commun., 3, p. 825
  • Esteban, R., Vogelgesang, R., Kern, K., Tip-substrate interaction in optical near-field microscopy (2007) Phys. Rev. B, 75, p. 195410
  • Esteban, R., Vogelgesang, R., Kern, K., Full simulations of the apertureless scanning near field optical microscopy signal: achievable resolution and contrast (2009) Opt. Express, 17 (4), pp. 2518-2529
  • Fischer, U.C., Pohl, D.W., Observation of single-particle plasmons by near-field optical microscopy (1989) Phys. Rev. Lett., 62, pp. 458-461
  • Fuller, K.A., Kattawar, G.W., Consummate solution to the problem of classical electromagnetic scattering by an ensemble of spheres (1988) Opt. Lett., 13 (2), pp. 90-92
  • García de Abajo, F.J., Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides (2008) J. Phys. Chem. C, 112, pp. 17983-17987
  • Girard, C., Joachim, C., Gauthier, S., The physics of the near-field. Rep. Prog (2000) Phys., 63, pp. 893-938
  • Hillenbrand, R., Keilmann, F., Material-specific mapping of metal/semiconductor/dielectric nanosystems at 10 nm resolution by backscattering near-field optical microscopy (2002) Appl. Phys. Lett., 80, pp. 25-27
  • Hillenbrand, R., Knoll, B., Keilmann, F., Pure optical contrast in scattering-type scanning near-field microscopy (2001) J. Microsc, 202, pp. 77-83
  • Höppener, C., Lapin, Z.J., Bharadwaj, P., Novotny, L., Self-similar gold-nanoparticle antennas for a cascaded enhancement of the optical field. Phys (2012) Rev. Lett., 109. , 017402-1-017402-4
  • Höppener, C., Novotny, L., Antenna-based optical imaging of single Ca2+ transmembrane proteins in liquids (2008) Nano. Lett., 8 (2), pp. 642-646
  • Inouye, Y., Kawata, S., Near-field scanning optical microscope with a metallic probe tip (1994) Opt. Lett., 19 (3), pp. 159-161
  • Johnson, P.B., Christy, R.W., Optical constants of the noble metals (1972) Phys. Rev. B, 6, pp. 4370-4379
  • Johnson, T.W., Lapin, Z.J., Beams, R., Lindquist, N.C., Rodrigo, S.G., Novotny, L., Oh, S.H., Highly reproducible near-field optical imaging with sub-20-nm resolution based on template-stripped gold pyramids (2012) ACS Nano., 6 (10), pp. 9168-9174
  • Kalkbrenner, T., Ramstein, M., Mlynek, J., Sandoghdar, V., A single gold particle as a probe for apertureless scanning near-field optical microscopy (2001) J. Microsc., 202, pp. 72-76
  • Keilmann, F., Hillenbrand, R., Near-field microscopy by elastic light scattering from a tip (2004) Phil. Trans. R. Soc. Lond. A, 362, pp. 787-805
  • Kelly, K.L., Coronado, E., Zhao, L.L., Schatz, G.C., The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment (2003) J. Phys. Chem. B, 107, pp. 668-677
  • Kim, Z.H., Liu, B., Leone, S.R., Nanometer-scale optical imaging of epitaxially grown GaN and InN islands using apertureless near-field microscopy (2005) J. Phys. Chem. B, 109, pp. 8503-8508
  • Knoll, B., Keilmann, F., Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy (2000) Opt. Commun., 182, pp. 321-328
  • Krug, J.T., Sánchez, E.J., Sunney, X.X., Design of near-field optical probes with optimal field enhancement by finite difference time domain electromagnetic simulation (2002) J. Chem. Phys., 116 (24), pp. 10895-10901
  • Labardi, M., Patanè, S., Allegrini, M., Artifact-free near-field optical imaging by apertureless microscopy (2000) Appl. Phys. Lett, 77, pp. 621-623
  • Liao, C.C., Lo, Y.L., Phenomenological model combining dipole-interaction signal and background effects for analyzing modulated detection in apertureless scanning near-field optical microscopy (2011) Prog. Electromagn. Res., 112, pp. 415-440
  • Maghelli, N., Labardi, M., Patanè, S., Irrera, F., Allegrini, M., Optical near-field harmonic demodulation in apertureless microscopy (2001) J. Microsc., 202, pp. 84-93
  • Martin, Y.C., Hamann, H.F., Wickramasinghe, H.K., Strength of the electric field in apertureless near-field optical microscopy (2001) J. Appl. Phys., 89 (10), pp. 5774-5778
  • Maximiano, R.V., Beams, R., Novotny, L., Jorio, A., Cançado, L.G., Mechanism of near-field Raman enhancement in two-dimensional systems (2012) Phys. Rev. B, 85. , 235434-1-235434-8
  • Novotny, L., Stranick, S.J., Near-field optical microscopy and spectroscopy with pointed probes (2006) Annu. Rev. Phys. Chem., 57, pp. 303-331
  • Palik, E.D., (1985) Handbook of Optical Constants of Solids, , Academic Press, New York
  • Perassi, E.M., Hernandez-Garrido, J.C., Moreno, M.S., Encina, E.R., Coronado, E.A., Midgley, P.A., Using highly accurate 3D nanometrology to model the optical properties of highly irregular nanoparticles: a powerful tool for rational design of plasmonic devices (2010) Nano. Lett., 10 (6), pp. 2097-2104
  • Perassi, E.M., Scarpettini, A.F., Masip, M.E., Bragas, A.V., Coronado, E.A., Understanding the plasmonic properties of silica microspheres decorated with Ag nanoparticles as new probes for field enhanced scanning optical microscopy (2011) J. Phys. Chem. C, 115, pp. 10455-10461
  • Porto, J.A., Johansson, P., Apell, S.P., López-Ríos, T., Resonance shift effects in apertureless scanning near-field optical microscopy (2003) Phys. Rev. B, 67. , 085409-1-085409-9
  • Purcell, E.M., Pennypacker, C.R., Scattering and absorption of light by nonspherical dielectric grains (1973) Astrophys. J., 186, pp. 705-714
  • Romero, I., Aizpurua, J., Bryant, G.W., de Abajo, F.J., Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers (2006) Opt. Express, 14, pp. 9988-9999. , García
  • Ruppin, R., Surface modes and optical absorption of a small sphere above a substrate (1983) Surf. Sci., 127, pp. 108-118
  • Sandoghdar, V., Trends and developments in scanning near-field optical microscopy (2001) Proceedings of the International School of Physics, "Enrico Fermi" course CXLIV, pp. 65-119. , ed. by M. Allegrini, N. García & O. Marti) -. IOS Press, Amsterdam
  • Scarpettini, A.F., Pellegri, N., Bragas, A.V., Optical imaging with subnanometric vertical resolution using nanoparticle-based plasmonic probes (2009) Opt. Commun., 282, pp. 1032-1035
  • Specht, M., Pedarnig, J.D., Heckl, W.M., Hänsch, T.W., Scanning plasmon near-field microscope (1992) Phys. Rev. Lett., 68 (4), pp. 476-479
  • Umakoshi, T., Yano, T., Saito, Y., Verma, P., Fabrication of near-field plasmonic tip by photoreduction for strong enhancement in tip-enhanced Raman spectroscopy (2012) Appl. Phys. Exp., 5. , 052001-1-052001-3
  • Vakarelski, I.U., Higashitani, K., Single-nanoparticle-terminated tips for scanning probe microscopy (2006) Langmuir, 22 (7), pp. 2931-2934
  • Walford, J.N., Porto, J.A., Carminati, R., Influence of tip modulation on image formation in scanning near-field optical microscopy (2001) J. Appl. Phys., 89 (9), pp. 5159-5169
  • Wessel, J., Surface-enhanced optical microscopy (1985) J. Opt. Soc. Am. B, 2 (9), pp. 1538-1541
  • Xu, Y.I., Gustafson, B.A.S., A generalized multiparticle Mie-solution: further experimental verification (2001) J. Quant. Spectrosc. Radiat. Transfer, 70 (4-6), pp. 395-419
  • Zenhausern, F., O'Boyle, M.P., Wickramasinghe, H.K., Apertureless near-field optical microscope (1994) Appl. Phys. Lett., 65 (13), pp. 1623-1625

Citas:

---------- APA ----------
Scarpettini, A.F. & Bragas, A.V. (2015) . Harmonic demodulation and minimum enhancement factors in field-enhanced near-field optical microscopy. Journal of Microscopy, 257(1), 54-64.
http://dx.doi.org/10.1111/jmi.12185
---------- CHICAGO ----------
Scarpettini, A.F., Bragas, A.V. "Harmonic demodulation and minimum enhancement factors in field-enhanced near-field optical microscopy" . Journal of Microscopy 257, no. 1 (2015) : 54-64.
http://dx.doi.org/10.1111/jmi.12185
---------- MLA ----------
Scarpettini, A.F., Bragas, A.V. "Harmonic demodulation and minimum enhancement factors in field-enhanced near-field optical microscopy" . Journal of Microscopy, vol. 257, no. 1, 2015, pp. 54-64.
http://dx.doi.org/10.1111/jmi.12185
---------- VANCOUVER ----------
Scarpettini, A.F., Bragas, A.V. Harmonic demodulation and minimum enhancement factors in field-enhanced near-field optical microscopy. J. Microsc. 2015;257(1):54-64.
http://dx.doi.org/10.1111/jmi.12185