Artículo

Friedman, R.; Khalid, S.; Aponte-Santamaría, C.; Arutyunova, E.; Becker, M.; Boyd, K.J.; Christensen, M.; Coimbra, J.T.S.; Concilio, S.; Daday, C.; van Eerden, F.J.; Fernandes, P.A.; Gräter, F.; Hakobyan, D.; Heuer, A.; Karathanou, K.; Keller, F.; Lemieux, M.J. (...) Domene, C. "Understanding Conformational Dynamics of Complex Lipid Mixtures Relevant to Biology" (2018) Journal of Membrane Biology. 251(5-6):609-631
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

This is a perspective article entitled “Frontiers in computational biophysics: understanding conformational dynamics of complex lipid mixtures relevant to biology” which is following a CECAM meeting with the same name. Graphical Abstract: [Figure not available: see fulltext.]. © 2018, The Author(s).

Registro:

Documento: Artículo
Título:Understanding Conformational Dynamics of Complex Lipid Mixtures Relevant to Biology
Autor:Friedman, R.; Khalid, S.; Aponte-Santamaría, C.; Arutyunova, E.; Becker, M.; Boyd, K.J.; Christensen, M.; Coimbra, J.T.S.; Concilio, S.; Daday, C.; van Eerden, F.J.; Fernandes, P.A.; Gräter, F.; Hakobyan, D.; Heuer, A.; Karathanou, K.; Keller, F.; Lemieux, M.J.; Marrink, S.J.; May, E.R.; Mazumdar, A.; Naftalin, R.; Pickholz, M.; Piotto, S.; Pohl, P.; Quinn, P.; Ramos, M.J.; Schiøtt, B.; Sengupta, D.; Sessa, L.; Vanni, S.; Zeppelin, T.; Zoni, V.; Bondar, A.-N.; Domene, C.
Filiación:Department of Chemistry and Biomedical Sciences and Centre of Excellence “Biomaterials Chemistry”, Linnæus University, Kalmar, Sweden
University of Southampton, Southampton, SO17 1BJ, United Kingdom
Max Planck Tandem Group in Computational Biophysics, University of Los Andes, Bogotá, Colombia
Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
Department of Biochemistry, University of Alberta, Edmonton, Canada
IPC, University of Münster, Münster, Germany
Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
Department of Chemistry, Aarhus University, Aarhus, Denmark
Interdisciplinary Nanoscience center (iNANO), Aarhus University, Aarhus, Denmark
Sino-Danish Center for Education and Research, Beijing, China
UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
Department of Industrial Engineering, University of Salerno, Fisciano, SA, Italy
Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
GBB Institute, University of Groningen, Groningen, Netherlands
Department of Physics, Theoretical Molecular Biophysics Group, Freie Universität Berlin, Arnimallee 14, Berlin, 14195, Germany
Physiology and Vascular Biology Departments, King’s College London School of Medicine, London, United Kingdom
Departamento de Física, Facultad de Ciencias Exactas y Naturales, CONICET-Universidad de Buenos Aires, IFIBA, Buenos Aires, Argentina
Department of Pharmacy, University of Salerno, Fisciano, SA, Italy
Institute of Biophysics, Johannes Kepler University, Linz, Austria
Biochemistry Department, King’s College London, London, United Kingdom
Physical Chemistry Division, National Chemical Laboratory, Pune, India
Department of Biology, University of Fribourg, Fribourg, Switzerland
Department of Chemistry, University of Bath, Claverton Down Bath, BA2 7AY, United Kingdom
Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom
Palabras clave:Cell membrane; Computational biophysics; Lipid–protein interactions; Molecular dynamics; amylin; cholesterol; dopamine transporter; epidermal growth factor receptor; fat droplet; glucose transporter 1; lipid; thylakoid membrane protein; biomembrane; cell membrane; crystal structure; glucose transport; high temperature; hormone binding; human; lipid composition; lipid membrane; lipid raft; molecular dynamics; nonhuman; protein conformation; protein degradation; protein interaction; protein localization; protein protein interaction; Review; temperature sensitivity
Año:2018
Volumen:251
Número:5-6
Página de inicio:609
Página de fin:631
DOI: http://dx.doi.org/10.1007/s00232-018-0050-y
Título revista:Journal of Membrane Biology
Título revista abreviado:J. Membr. Biol.
ISSN:00222631
CODEN:JMBBB
CAS:amylin, 106602-62-4; cholesterol, 57-88-5; epidermal growth factor receptor, 79079-06-4; glucose transporter 1, 172077-08-6; lipid, 66455-18-3
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00222631_v251_n5-6_p609_Friedman

Referencias:

  • Aponte-Santamaría, C., Brunken, J., Gräter, F., Stress propagation through biological lipid bilayers in silico (2017) J Am Chem Soc, 139, pp. 13,588-13,591
  • Arutyunova, E., Panwar, P., Skiba, P.M., Gale, N., Mak, M.W., Lemieux, M.J., Allosteric regulation of rhomboid intramembrane proteolysis (2014) EMBO J, 33 (17), pp. 1869-1881. , COI: 1:CAS:528:DC%2BC2cXhvVWltrjK, PID: 25009246
  • Atilla-Gokcumen, G.E., Muro, E., Relat-Goberna, J., Sasse, S., Bedigian, A., Coughlin, M.L., Garcia-Manyes, S., Eggert, U.S., Dividing cells regulate their lipid composition and localization (2014) Cell, 156, pp. 428-439
  • Bacle, A., Gautier, R., Jackson, C.L., Fuchs, P.F.J., Vanni, S., Interdigitation between triglycerides and lipids modulates surface properties of lipid droplets (2017) Biophys J, 112 (7), pp. 1417-1430. , COI: 1:CAS:528:DC%2BC2sXkt1Sqs7g%3D, PID: 28402884
  • Beevers, A.J., Kukol, A., The transmembrane domain of the oncogenic mutant erbb-2 receptor: a structure obtained from site-specific infrared dichroism and molecular dynamics (2006) J Mol Biol, 361, pp. 945-953. , COI: 1:CAS:528:DC%2BD28XotV2kt7k%3D, PID: 16889796
  • Beevers, A.J., Damianoglou, A., Pates, J., Rodger, A., Dixon, A.M., Sequence-dependent oligomerization of the neu transmembrane domain suggests inhibition of “conformational switching” by an oncogenic mutant (2010) Biochemistry, 49, pp. 2811-2820. , COI: 1:CAS:528:DC%2BC3cXivFGhs78%3D, PID: 20180588
  • Beevers, A.J., Nash, A., Salazar-Cancino, M., Scott, D.J., Notman, R., Dixon, A.M., Effects of the oncogenic v664e mutation on membrane insertion, structure, and sequence-dependent interactions of the neu transmembrane domain in micelles and model membranes: An integrated biophysical and simulation study (2012) Biochemistry, 51, pp. 2558-2568. , COI: 1:CAS:528:DC%2BC38XjtFWhs78%3D, PID: 22385253
  • Ben M’barek, K., Ajjaji, D., Chorlay, A., Vanni, S., Foret, L., Thiam, A.R., ER membrane phospholipids and surface tension control cellular lipid droplet formation (2017) Dev Cell, 41 (6), pp. 591-604. , PID: 28579322
  • Berendsen, H.J.C., van der Spoel, D., Vandrunen, R., Gromacs - a message-passing parallel molecular-dynamics implementation (1995) Comput Phys Commun, 91, pp. 43-56. , COI: 1:CAS:528:DyaK2MXps1Wrtr0%3D
  • Boyd, K.J., Alder, N.N., May, E.R., Buckling under pressure: curvature-based lipid segregation and stability modulation in cardiolipin-containing bilayers (2017) Langmuir, 33 (27), pp. 6937-6946. , COI: 1:CAS:528:DC%2BC2sXhtVWht7fI, PID: 28628337
  • Boyd, K.J., Alder, N.N., May, E.R., Molecular dynamics analysis of cardiolipin and monolysocardiolipin on bilayer properties (2018) Biophys J, 114 (9), pp. 2116-2127. , COI: 1:CAS:528:DC%2BC1cXotFKmurs%3D, PID: 29742405
  • Brooks, C.L., Lazareno-Saez, C., Lamoureux, J.S., Mak, M.W., Lemieux, M.J., Insights into substrate gating in H. influenzae rhomboid (2011) J Mol Biol, 407 (5), pp. 687-697. , COI: 1:CAS:528:DC%2BC3MXjsV2iurc%3D, PID: 21295583
  • Casas, J., Ibarguren, M., Álvarez, R., Terés, S., Lladó, V., Piotto, S.P., Concilio, S., Escribá, P.V., G protein-membrane interactions II: effect of G protein-linked lipids on membrane structure and G protein-membrane interactions (2017) Biochim Biophys Acta, 1859 (9), pp. 1526-1535. , COI: 1:CAS:528:DC%2BC2sXmt1Khur0%3D
  • Chiu, W., Downing, K.H., Editorial overview: Cryo Electron Microscopy: Exciting advances in CryoEM Herald a new era in structural biology (2017) Curr Opin Struct Biol, 46, pp. iv-viii. , COI: 1:CAS:528:DC%2BC2sXht1yit73N, PID: 28801059
  • Christensen, M., Skeby, K.K., Schiøtt, B., Identification of key interactions in the initial self-assembly of amylin in a membrane environment (2017) Biochemistry, 56 (36), pp. 4884-4894. , COI: 1:CAS:528:DC%2BC2sXht1ylsrnO, PID: 28786287
  • Chu, J.W., Izveko, S., Voth, G.A., The multiscale challenge for biomolecular systems: coarse-grained modeling (2006) Mol Simul, 32 (3-4), pp. 211-218. , COI: 1:CAS:528:DC%2BD28XntFWgu7Y%3D
  • Coimbra, J.T., Moniz, T., Brás, N.F., Ivanova, G., Fernandes, P.A., Ramos, M.J., Rangel, M., Relevant interactions of antimicrobial iron chelators and membrane models revealed by nuclear magnetic resonance and molecular dynamics simulations (2014) J Phys Chem B, 118 (50), pp. 14,590-14,601. , COI: 1:CAS:528:DC%2BC2cXitVWitbfP
  • Coimbra, J.T.S., Fernandes, P.A., Ramos, M.J., Revisiting partition in hydrated bilayer systems (2017) J Chem Theory Comput, 13 (5), pp. 2290-2299. , COI: 1:CAS:528:DC%2BC2sXlslCjurs%3D, PID: 28388088
  • Collins, M.D., Interleaflet coupling mechanisms in bilayers of lipids and cholesterol (2008) Biophys J, 94 (5), pp. L32-L34. , COI: 1:CAS:528:DC%2BD1cXit1yqt7w%3D, PID: 18096628
  • Cunningham, P., Afzal-Ahmed, I., Naftalin, R.J., Docking studies show that D-glucose and quercetin slide through the transporter GLUT1 (2006) J Biol Chem, 281 (9), pp. 5797-5803. , COI: 1:CAS:528:DC%2BD28XhvVejtb0%3D, PID: 16407180
  • Deng, D., Xu, C., Sun, P., Wu, J., Yan, C., Hu, M., Yan, N., Crystal structure of the human glucose transporter GLUT1 (2014) Nature, 510 (7503), pp. 121-125. , COI: 1:CAS:528:DC%2BC2MXitFGitL8%3D, PID: 24847886
  • Duan, Y.J., Fukatsu, H., Miwa, I., Okuda, J., Anomeric preference of glucose utilization in rat erythrocytes (1992) Mol Cell Biochem, 112 (1), pp. 23-28. , COI: 1:CAS:528:DyaK38Xks1OgsL4%3D, PID: 1513331
  • Dubey, V., Prasanna, X., Sengupta, D., Estimating the lipophobic contributions in model membranes (2017) J Phys Chem B, 121, pp. 2111-2120. , COI: 1:CAS:528:DC%2BC2sXisVWhs7w%3D, PID: 28186760
  • Duneau, J.P., Khao, J., Sturgis, J.N., Lipid perturbation by membrane proteins and the lipophobic effect (2016) Biochim Biophys Acta, 1859, pp. 126-134
  • Düsterhöft, S., Künzel, U., Freeman, M., Rhomboid proteases in human disease: mechanisms and future prospects (2017) Biochim Biophys Acta, 1864 (11 Pt B), pp. 2200-2209
  • Friedman, R., Membrane-ion interactions (2018) J Membr Biol, 251, pp. 453-460. , COI: 1:CAS:528:DC%2BC1cXhtVKrs78%3D, PID: 29330605
  • Friedman, R., Pellarin, R., Caflisch, A., Amyloid aggregation on lipid bilayers and its impact on membrane permeability (2009) J Mol Biol, 387, pp. 407-415. , COI: 1:CAS:528:DC%2BD1MXjt1Smu7o%3D, PID: 19133272
  • Galimzyanov, T.R., Molotkovsky, R.J., Bozdaganyan, M.E., Cohen, F.S., Pohl, P., Akimov, S.A., Elastic membrane deformations govern interleaflet coupling of lipid-ordered domains (2015) Phys Rev Lett, 115 (8), p. 088,101
  • Galimzyanov, T.R., Kuzmin, P.I., Pohl, P., Akimov, S.A., Undulations drive domain registration from the two membrane leaflets (2017) Biophys J, 112 (2), pp. 339-345. , COI: 1:CAS:528:DC%2BC2sXhtFOgu74%3D, PID: 28122219
  • Genheden, S., Essex, J.W., A simple and transferable all-atom/coarse-grained hybrid model to study membrane processes (2015) J Chem Theory Comput, 11 (10), pp. 4749-4759. , COI: 1:CAS:528:DC%2BC2MXhtlymsbvL, PID: 26574264
  • Go˜ni, G., Epifano, C., Boskovic, J., Camacho-Artacho, M., Zhou, J., Bronowska, A., Mart´ın, M., Lietha, D., Phosphatidylinositol 4,5-bisphosphate triggers activation of focal adhesion kinase by inducing clustering and conformational changes (2014) Proc Natl Acad Sci USA, 111, p. E3177
  • Grillo, D.A., Albano, J.M., Mocskos, E.E., Facelli, J.C., Pickholz, M., Ferraro, M.B., Diblock copolymer bilayers as model for polymersomes: a coarse grain approach (2017) J Chem Phys, 146 (24), p. 244,904
  • Guerra, F., Siemers, M., Mielack, C., Bondar, A.N., Dynamics of long-distance hydrogen-bond networks in photosystem II (2018) J Phys Chem B, 122, pp. 4625-4641. , COI: 1:CAS:528:DC%2BC1cXmt1Wlt7s%3D, PID: 29589763
  • Hakobyan, D., Heuer, A., Phase separation in a lipid/cholesterol system: comparison of coarse-grained and united-atom simulations (2013) J Phys Chem B, 117 (14), pp. 3841-3851. , COI: 1:CAS:528:DC%2BC3sXjs1yhurs%3D, PID: 23470157
  • Hakobyan, D., Heuer, A., Key molecular requirements for raft formation in lipid/cholesterol membranes (2014) PLoS ONE, 9 (2)
  • Hakobyan, D., Heuer, A., 2D lattice model of a lipid bilayer: microscopic derivation and thermodynamic exploration (2017) J Chem Phys, 146 (6), p. 064,305
  • He, L., Hristova, K., Pathogenic activation of receptor tyrosine kinases in mammalian membranes (2008) J Mol Biol, 384, pp. 1130-1142. , COI: 1:CAS:528:DC%2BD1cXhsVKru73O, PID: 18976668
  • Horner, A., Antonenko, Y.N., Pohl, P., Coupled diffusion of peripherally bound peptides along the outer and inner membrane leaflets (2009) Biophys J, 96 (7), pp. 2689-2695. , COI: 1:CAS:528:DC%2BD1MXnvVeksrk%3D, PID: 19348751
  • Horner, A., Akimov, S.A., Pohl, P., Long and short lipid molecules experience the same interleaflet drag in lipid bilayers (2013) Phys Rev Lett, 110 (26), p. 268,101
  • Hsu, P.C., Samsudin, F., Shearer, J., Khalid, S., It is complicated: curvature, diffusion, and lipid sorting within the two membranes of Escherichia coli (2017) J Phys Chem Lett, 8 (22), pp. 5513-5518. , COI: 1:CAS:528:DC%2BC2sXhslSit7zE, PID: 29053278
  • Humphrey, W., Dalke, A., Schulten, K., VMD: visual molecular dynamics (1996) J Mol Graph, 14, pp. 33-38. , COI: 1:CAS:528:DyaK28Xis12nsrg%3D, PID: 8744570
  • Iglesias-Fernandez, J., Quinn, P.J., Naftalin, R.J., Domene, C., Membrane phase-dependent occlusion of intramolecular GLUT1 cavities demonstrated by simulations (2017) Biophys J, 112 (6), pp. 1176-1184. , COI: 1:CAS:528:DC%2BC2sXjt1Kht7c%3D, PID: 28355545
  • Ingólfsson, H.I., Melo, M.N., van Eerden, F.J., Arnarez, C., Lopez, C.A., Wassenaar, T.A., Periole, X., Marrink, S.J., Lipid organization of the plasma membrane (2014) J Am Chem Soc, 136 (41), pp. 14,554-14,559
  • de Jong, D.H., Liguori, N., van den Berg, T., Arnarez, C., Periole, X., Marrink, S.J., Atomistic and coarse grain topologies for the cofactors associated with the photosystem II core complex (2015) J Phys Chem B, 119 (25), pp. 7791-7803. , PID: 26053327
  • Kar, P., Feig, M., Hybrid all-atom/coarse-grained simulations of proteins by direct coupling of CHARMM and PRIMO force fields (2017) J Chem Theory Comput, 13 (11), pp. 5753-5765. , COI: 1:CAS:528:DC%2BC2sXhs1amu7%2FJ, PID: 28992696
  • Karathanou, K., Bondar, A.N., Dynamic water hydrogen-bond networks at the interface of a lipid membrane containing palmitoyl-oleoyl phosphatidylglycerol (2018) J Membr Biol, 251, pp. 461-473. , COI: 1:CAS:528:DC%2BC1cXkt1KhtL4%3D, PID: 29523937
  • Karlsson, B.C., Olsson, G.D., Friedman, R., Rosengren, A.M., Henschel, H., Nicholls, I.A., How warfarin’s structural diversity influences its phospholipid bilayer membrane permeation (2013) J Phys Chem B, 117, pp. 2384-2395. , COI: 1:CAS:528:DC%2BC3sXhvVygu7k%3D, PID: 23373529
  • Katira, S., Mandadapu, K.K., Vaikuntanathan, S., Smit, B., Chandler, D., Pre-transition effects mediate forces of assembly between transmembrane proteins (2016) eLife, 5, p. e13,150
  • Kuhn, A.B., Gopal, S.M., Schafer, L.V., On using atomistic solvent layers in hybrid all-atom/coarse-grained molecular dynamics simulations (2015) J Chem Theory Comput, 11 (9), pp. 4460-4472. , COI: 1:CAS:528:DC%2BC2MXht1CitbbL, PID: 26575936
  • Kumar, S., Stecher, G., Tamura, K., MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets (2016) Mol Biol Evol, 33 (7), pp. 1870-1874. , COI: 1:CAS:528:DC%2BC28XhsF2ltrzN, PID: 27004904
  • Lingwood, D., Kaiser, H.J., Levental, I., Simons, K., Lipid rafts as functional heterogeneity in cell membranes (2009) Biochem Soc Trans, 37, pp. 955-960. , COI: 1:CAS:528:DC%2BD1MXhtFGls7fO, PID: 19754431
  • Marrink, S.J., Risselada, H.J., Yefimov, S., Tieleman, D.P., de Vries, A.H., The MARTINI force field: coarse grained model for biomolecular simulations (2007) J Phys Chem B, 111, pp. 7812-7824. , COI: 1:CAS:528:DC%2BD2sXmsVKmsLc%3D, PID: 17569554
  • (2017) MATLAB, , Natick, MA
  • Mayes, H.B., Broadbelt, L.J., Beckham, G.T., How sugars pucker: electronic structure calculations map the kinetic landscape of five biologically paramount monosaccharides and their implications for enzymatic catalysis (2014) J Am Chem Soc, 136 (3), pp. 1008-1022. , COI: 1:CAS:528:DC%2BC3sXhvFymsL7J, PID: 24368073
  • Namgung, R., Lee, Y.M., Kim, J., Jang, Y., Lee, B.H., Kim, I.S., Sokkar, P., Kim, W.J., Poly-cyclodextrin and poly-paclitaxel nano-assembly for anticancer therapy (2014) Nat Commun, 5, p. 3702. , COI: 1:CAS:528:DC%2BC2MXksVemurw%3D, PID: 24805848
  • Nei, M., Kumar, S., (2000) Molecular evolution and phylogenetics, , Oxford University Press, Oxford
  • Nogales, E., The development of cryo-EM into a mainstream structural biology technique (2016) Nat Methods, 13 (1), pp. 24-27. , COI: 1:CAS:528:DC%2BC28XptlKq, PID: 4913480
  • Ohkubo, Y.Z., Pogorelov, T.V., Arcario, M.J., Christensen, G.A., Tajkhorshid, E., Accelerating membrane insertion of peripheral proteins with a novel membrane mimetic model (2012) Biophys J, 102 (9), pp. 2130-2139. , COI: 1:CAS:528:DC%2BC38XmsVCitr0%3D, PID: 22824277
  • Orsi, M., Essex, J.W., The ELBA force field for coarse-grain modeling of lipid membranes (2011) PLoS ONE, 6 (12). , COI: 1:CAS:528:DC%2BC38XjvFahsA%3D%3D
  • Pawar, A., Sengupta, D., Effect of membrane composition on receptor association: implications of cancer lipidomics on erbb receptors (2018) J Membr Biol, 251, pp. 359-368. , COI: 1:CAS:528:DC%2BC1cXhtl2ns7o%3D, PID: 29352432
  • Pineda De Castro, L., Dopson, M., Friedman, R., Biological membranes in extreme conditions: anionic tetraether lipid membranes and their interactions with sodium and potassium (2016) J Phys Chem B, 120, p. 634
  • Pineda De Castro, L., Dopson, M., Friedman, R., Biological membranes in extreme conditions: simulations of anionic archaeal tetraether lipid membranes (2016) PLoS ONE, 11, pp. 1-19
  • Piñeiro, A., Bond, P.J., Khalid, S., Exploring the conformational dynamics and membrane interactions of PorB from C. glutamicum: a multi-scale molecular dynamics simulation study (2011) Biochim Biophys Acta, 1808 (6), pp. 1746-1752. , PID: 21354102
  • Piotto, S., Trapani, A., Bianchino, E., Ibarguren, M., López, D.J., Busquets, X., Concilio, S., The effect of hydroxylated fatty acid-containing phospholipids in the remodeling of lipid membranes (2014) Biochim Biophys Acta, 1838 (6), pp. 1509-1517. , COI: 1:CAS:528:DC%2BC2cXhvFGqsLo%3D, PID: 24463068
  • Piotto, S., Di Biase, L., Sessa, L., Concilio, S., Transmembrane peptides as sensors of the membrane physical state (2018) Front Phys, 6, p. 48
  • Plimpton, S., Fast parallel algorithms for short-range molecular dynamics (1995) J Comput Phys, 117 (1), pp. 1-19. , COI: 1:CAS:528:DyaK2MXlt1ejs7Y%3D
  • Prasanna, X., Praveen, P.J., Sengupta, D., Sequence dependent lipid-mediated effects modulate the dimerization of ErbB2 and its associative mutants (2013) Phys Chem Chem Phys, 15, pp. 19,031-19,041. , COI: 1:CAS:528:DC%2BC3sXhs1eiu7fN
  • Ranade, S.S., Syeda, R., Patapoutian, A., Mechanically activated ion channels (2015) Neuron, 87 (6), pp. 1162-1179
  • Ribeiro, R.P., Coimbra, J.T.S., Ramos, M.J., Fernandes, P.A., Diffusion of the small, very polar, drug piracetam through a lipid bilayer: an md simulation study (2017) Theor Chem Acc, 136 (4), p. 46
  • Risselada, H.J., Marrink, S.J., The molecular face of lipid rafts in model membranes (2008) Proc Natl Acad Sci USA, 105 (45), pp. 17,367-17,372. , COI: 1:CAS:528:DC%2BD1cXhsVWns73K
  • Ritchie, K., Lill, Y., Sood, C., Lee, H., Zhang, S., Single-molecule imaging in live bacteria cells (2013) Philos Trans R Soc Lond B, 368 (1611), p. 20120,355
  • Sengupta, D., Marrink, S.J., Lipid-mediated interactions tune the association of glycophorin A helix and its disruptive mutants in membranes (2010) Phys Chem Chem Phys, 12, pp. 12,987-12,996. , COI: 1:CAS:528:DC%2BC3cXht1GjtLbO
  • Shaw, D.E., Deneroff, M.M., Dror, R.O., Kuskin, J.S., Larson, R.H., Salmon, J.K., Young, C., Chao, J.C., Anton, a special-purpose machine for molecular dynamics simulation (2008) Commun ACM, 51 (7), pp. 91-97
  • Shinoda, W., DeVane, R., Klein, M.L., Zwitterionic lipid assemblies: molecular dynamics studies of monolayers, bilayers, and vesicles using a new coarse grain force field (2010) J Phys Chem B, 114 (20), pp. 6836-6849. , COI: 1:CAS:528:DC%2BC3cXlsFWqtr0%3D, PID: 20438090
  • Skeby, K.K., Andersen, O.J., Pogorelov, T.V., Tajkhorshid, E., Schiøtt, B., Conformational dynamics of the human islet amyloid polypeptide in a membrane environment: toward the aggregation prone form (2016) Biochemistry, 55 (13), pp. 2031-2042. , COI: 1:CAS:528:DC%2BC28XjslCmtr0%3D, PID: 26953503
  • Soares, T.A., Vanni, S., Milano, G., Cascella, M., Toward chemically resolved computer simulations of dynamics and remodeling of biological membranes (2017) J Phys Chem Lett, 8 (15), pp. 3586-3594. , COI: 1:CAS:528:DC%2BC2sXhtFOmtL%2FP, PID: 28707901
  • Sousa, C.F., Coimbra, J.T.S., Gomes, I., Franco, R., Fernandes, P.A., Gameiro, P., The binding of free and copper-complexed fluoroquinolones to ompf porins: an experimental and molecular docking study (2017) RSC Adv, 7, pp. 10,009-10,019. , COI: 1:CAS:528:DC%2BC2sXitVOjsLo%3D
  • van der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E., Berendsen, H.J.C., Gromacs: fast, flexible, and free (2005) J Comput Chem, 26, pp. 1701-1718
  • Stansfeld, P.J., Sansom, M.S., From coarse grained to atomistic: a serial multiscale approach to membrane protein simulations (2011) J Chem Theory Comput, 7 (4), pp. 1157-1166. , COI: 1:CAS:528:DC%2BC3MXjt1Gjs78%3D, PID: 26606363
  • Strisovsky, K., Sharpe, H.J., Freeman, M., Sequence-specific intramembrane proteolysis: identification of a recognition motif in rhomboid substrates (2009) Mol Cell, 36 (6), pp. 1048-1059. , COI: 1:CAS:528:DC%2BC3cXhslaqs7o%3D, PID: 20064469
  • Tefft, R.E., Carruthers, A., Melchior, D.L., Reconstituted human erythrocyte sugar transporter activity is determined by bilayer lipid head groups (1986) Biochemistry, 25 (12), pp. 3709-3718. , COI: 1:CAS:528:DyaL28XktVahurc%3D, PID: 3718955
  • Tian, W., Lin, M., Tang, K., Liang, J., Naveed, H., High-resolution structure prediction of β -barrel membrane proteins (2018) Proc Natl Acad Sci USA, 115 (7), pp. 1511-1516. , COI: 1:CAS:528:DC%2BC1cXitVWjtbjO, PID: 29378944
  • Török, Z., Crul, T., Maresca, B., Schütz, G.J., Viana, F., Dindia, L., Piotto, S., Vigh, L., Plasma membranes as heat stress sensors: from lipid-controlled molecular switches to therapeutic applications (2014) Biochim Biophys Acta, 1838 (6), pp. 1594-1618. , PID: 24374314
  • Vanni, S., Intracellular lipid droplets: from structure to function (2017) Lipid Insights
  • van Eerden, F.J., de Jong, D.H., de Vries, A.H., Wassenaar, T.A., Marrink, S.J., Characterization of thylakoid lipid membranes from cyanobacteria and higher plants by molecular dynamics simulations (2015) Biochim Biophys Acta, 1848 (6), pp. 1319-1330. , PID: 25749153
  • van Eerden, F.J., van den Berg, T., Frederix, P.W.J.M., de Jong, D.H., Periole, X., Marrink, S.J., Molecular dynamics of photosystem II embedded in the thylakoid membrane (2017) J Phys Chem B, 121 (15), pp. 3237-3249. , PID: 27624992
  • van Eerden, F.J., Melo, M.N., Frederix, P.W.J.M., Periole, X., Marrink, S.J., Exchange pathways of plastoquinone and plastoquinol in the photosystem II complex (2017) Nat Commun, 8 (15), p. 214
  • van Eerden, F.J., Melo, M.N., Frederix, P.W.J.M., Marrink, S.J., Prediction of thylakoid lipid binding sites on photosystem II (2017) Biophys J, 113 (12), pp. 2669-2681. , PID: 29262360
  • Veber, D.F., Johnson, S.R., Cheng, H.Y., Smith, B.R., Ward, K.W., Kopple, K.D., Molecular properties that influence the oral bioavailability of drug candidates (2002) J Med Chem, 45, pp. 2615-2623. , COI: 1:CAS:528:DC%2BD38XjsFCmt7g%3D, PID: 12036371
  • Wang, K.H., Penmatsa, A., Gouaux, E., Neurotransmitter and psychostimulant recognition by the dopamine transporter (2015) Nature, 521 (7552), pp. 322-327. , COI: 1:CAS:528:DC%2BC2MXht1WltbbK, PID: 25970245
  • Wang, S., Fei, S., Wang, Z., Li, Y., Xu, J., Zhao, F., Gao, X., PredMP: a web server for de novo prediction and visualization of membrane proteins (2018) Bioinformatics
  • Wang, X., Deserno, M., Determining the pivotal plane of fluid lipid membranes in simulations (2015) J Chem Phys, 143 (16), p. 164,109
  • Wang, Y., Zhang, Y., Ha, Y., Crystal structure of a rhomboid family intramembrane protease (2006) Nature, 444 (7116), pp. 179-180. , COI: 1:CAS:528:DC%2BD28XhtFyqt7jO, PID: 17051161
  • Wood, I., Pickholz, M., Concentration effects of sumatriptan on the properties of model membranes by molecular dynamics simulations (2013) Eur Biophys J, 42 (11-12), pp. 833-841. , COI: 1:CAS:528:DC%2BC3sXhsFGnsr%2FP, PID: 24077664
  • Wood, I., Albano, J.M., Pedro Filho, L., Couto, V.M., de Farias, M.A., Portugal, R.V., de Paula, E., Pickholz, M., A sumatriptan coarse-grained model to explore different environments: interplay with experimental techniques (2018) Eur Biophys J, 47, pp. 1-11
  • Zeppelin, T., Ladefoged, L.K., Sinning, S., Periole, X., Schiøtt, B., A direct interaction of cholesterol with the dopamine transporter prevents its out-to-inward transition (2018) PLoS Comput Biol, 14 (1). , PID: 29329285
  • Zhou, J., Aponte-Santamaría, C., Sturm, S., Bullerjahn, J.T., Bronowska, A., Gräter, F., Mechanism of focal adhesion kinase mechanosensing (2015) PLoS Comput Biol, 11 (e1004), p. 593
  • Zwaal, R.F., Comfurius, P., Bevers, E.M., Surface exposure of phosphatidylserine in pathological cells (2005) Cell Mol Life Sci, 62 (9), pp. 971-988. , COI: 1:CAS:528:DC%2BD2MXkslOls7k%3D, PID: 15761668

Citas:

---------- APA ----------
Friedman, R., Khalid, S., Aponte-Santamaría, C., Arutyunova, E., Becker, M., Boyd, K.J., Christensen, M.,..., Domene, C. (2018) . Understanding Conformational Dynamics of Complex Lipid Mixtures Relevant to Biology. Journal of Membrane Biology, 251(5-6), 609-631.
http://dx.doi.org/10.1007/s00232-018-0050-y
---------- CHICAGO ----------
Friedman, R., Khalid, S., Aponte-Santamaría, C., Arutyunova, E., Becker, M., Boyd, K.J., et al. "Understanding Conformational Dynamics of Complex Lipid Mixtures Relevant to Biology" . Journal of Membrane Biology 251, no. 5-6 (2018) : 609-631.
http://dx.doi.org/10.1007/s00232-018-0050-y
---------- MLA ----------
Friedman, R., Khalid, S., Aponte-Santamaría, C., Arutyunova, E., Becker, M., Boyd, K.J., et al. "Understanding Conformational Dynamics of Complex Lipid Mixtures Relevant to Biology" . Journal of Membrane Biology, vol. 251, no. 5-6, 2018, pp. 609-631.
http://dx.doi.org/10.1007/s00232-018-0050-y
---------- VANCOUVER ----------
Friedman, R., Khalid, S., Aponte-Santamaría, C., Arutyunova, E., Becker, M., Boyd, K.J., et al. Understanding Conformational Dynamics of Complex Lipid Mixtures Relevant to Biology. J. Membr. Biol. 2018;251(5-6):609-631.
http://dx.doi.org/10.1007/s00232-018-0050-y